ortho-Aminomethylphenylboronic acids are used in receptors for carbohydrates and various other compounds containing vicinal diols. The presence of the o-aminomethyl group enhances the affinity towards diols at neutral pH, and the manner in which this group plays this role has been a topic of debate. Further, the aminomethyl group is believed to be involved in the turn-on of the emission properties of appended fluorophores upon diol binding. In this treatise, a uniform picture emerges for the role of this group: it primarily acts as an electron-withdrawing group that lowers the pK of the neighbouring boronic acid thereby facilitating diol binding at neutral pH. The amine appears to play no role in the modulation of the fluorescence of appended fluorophores in the protic-solvent-inserted form of the boronic acid/boronate ester. Instead, fluorescence turn-on can be consistently tied to vibrational-coupled excited-state relaxation (a loose-bolt effect). Overall, this Review unifies and discusses the existing data as of 2019 whilst also highlighting why o-aminomethyl groups are so widely used, and the role they play in carbohydrate sensing using phenylboronic acids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573735 | PMC |
http://dx.doi.org/10.1038/s41557-019-0314-x | DOI Listing |
Nat Chem
September 2019
Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
ortho-Aminomethylphenylboronic acids are used in receptors for carbohydrates and various other compounds containing vicinal diols. The presence of the o-aminomethyl group enhances the affinity towards diols at neutral pH, and the manner in which this group plays this role has been a topic of debate. Further, the aminomethyl group is believed to be involved in the turn-on of the emission properties of appended fluorophores upon diol binding.
View Article and Find Full Text PDFJ Am Chem Soc
February 2018
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
Different mechanisms for the emission turn-on of ortho-aminomethylphenylboronic acids with appended fluorophores in response to saccharide binding in aqueous media have been postulated, such as photoinduced electron transfer (PET), "pK switch", and disaggregation. However, none of the hypotheses is consistent with all the data for boronic acid-based sensors. To create a unifying theory that can explain the data, we performed a series of experiments to explore the origin of the emission turn-on with several boronic-acid based sensors upon binding fructose.
View Article and Find Full Text PDFJ Control Release
August 2013
Department of Biomedical Chemistry, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
In order to evaluate the influence of incorporation of boronic acid groups on the properties of poly(amido amine)s as gene vectors, a novel poly(amido amine) copolymer p(CBA-ABOL/2AMPBA) containing ortho-aminomethylphenylboronic acid (2AMPBA) moieties was prepared by Michael-type polyaddition of a mixture of 1,4-aminobutanol (ABOL) and 2-((4-aminobutylamino)methyl)phenyl boronic acid to N,N'-cystamine bisacrylamide (CBA). It appeared that the presence of the boronic acid moieties as side groups along the polymer chain strongly enhances the stability of the self-assembled nanoparticles and nanosized polyplexes formed from this polymer; no aggregation was observed after storage for 6days at 37°C. This strong stabilization can be attributed to intermolecular Lewis acid-base interactions between the 2AMPBA groups and the alcohol and amine groups present in the polymer, leading to dynamical (reversible) crosslinking in the nanoparticles.
View Article and Find Full Text PDFJ Control Release
October 2011
Department of Biomedical Chemistry, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
The effects of the presence of two different types of phenylboronic acids as side groups in disulfide-containing poly(amido amine)s (SS-PAA) were investigated in the application of these polymers as gene delivery vectors. To this purpose, a para-carboxyphenylboronic acid was grafted on a SS-PAA with pending aminobutyl side chains, resulting in p(DAB-4CPBA) and an ortho-aminomethylphenylboronic acid was incorporated through copolymerization, resulting in p(DAB-2AMPBA). Both polymers have 30% of phenylboronic acid side chains and 70% of residual aminobutyl side chains and were compared with the non-boronated benzoylated analogue p(DAB-Bz) of similar M(w).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!