A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spectroscopic studies of atomic defects and bandgap renormalization in semiconducting monolayer transition metal dichalcogenides. | LitMetric

Assessing atomic defect states and their ramifications on the electronic properties of two-dimensional van der Waals semiconducting transition metal dichalcogenides (SC-TMDs) is the primary task to expedite multi-disciplinary efforts in the promotion of next-generation electrical and optical device applications utilizing these low-dimensional materials. Here, with electron tunneling and optical spectroscopy measurements with density functional theory, we spectroscopically locate the mid-gap states from chalcogen-atom vacancies in four representative monolayer SC-TMDs-WS, MoS, WSe, and MoSe-, and carefully analyze the similarities and dissimilarities of the atomic defects in four distinctive materials regarding the physical origins of the missing chalcogen atoms and the implications to SC-mTMD properties. In addition, we address both quasiparticle and optical energy gaps of the SC-mTMD films and find out many-body interactions significantly enlarge the quasiparticle energy gaps and excitonic binding energies, when the semiconducting monolayers are encapsulated by non-interacting hexagonal boron nitride layers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707146PMC
http://dx.doi.org/10.1038/s41467-019-11751-3DOI Listing

Publication Analysis

Top Keywords

atomic defects
8
transition metal
8
metal dichalcogenides
8
energy gaps
8
spectroscopic studies
4
studies atomic
4
defects bandgap
4
bandgap renormalization
4
renormalization semiconducting
4
semiconducting monolayer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!