Our study was initiated to challenge the preconception that nonporous PLGA microspheres with compact matrices should be used to develop long-acting depot injectables of hydrophobic drugs. A simple, new oil-in-water emulsion technique was utilized to produce porous PLGA microspheres with a sponge-like skeleton. Then, their applicability to developing sustained-release depots of hydrophobic drugs was explored in this study. As control, nonporous microspheres with a compact matrix were produced following a typical solvent evaporation process. Both microsphere manufacturing processes used non-halogenated isopropyl formate and progesterone as a dispersed solvent and a model hydrophobic drug, respectively. Various attempts were made to evaluate critical quality attributes of the porous microspheres and the nonporous ones. Surprisingly, the former displayed interesting features from the viewpoints of manufacturability and microsphere quality. For example, the spongy microspheres improved drug encapsulation efficiency and particle size uniformity, inhibited drug crystallization during microencapsulation, and minimized the residual solvent content in microspheres. Furthermore, the porous microspheres provided continual drug release kinetics without a lag time and much faster drug release than the non-porous microspheres did. In summary, the porous and sponge-like PLGA microspheres might find lucrative applications in developing sustained release dosage forms of hydrophobic drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2019.1659712 | DOI Listing |
Colloids Surf B Biointerfaces
December 2024
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China. Electronic address:
The healing of infected wounds is a complex and dynamic process requiring tailored treatment strategies that address both antimicrobial and reparative needs. Despite the development of numerous drugs, few approaches have been devised to optimize the timing of drug release for targeting distinct phases of infection control and tissue repair, limiting the overall treatment efficacy. Here, a stimuli-responsive microsphere encapsulating dual drugs was developed to facilitate differential drug release during distinct phases of antibacterial and repair promotion, thereby synergistically enhancing wound healing.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2024
Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
Introduction: Spinal cord injury (SCI) is a severe central nervous system disorder that results in significant sensory, motor, and autonomic dysfunctions. Current surgical techniques and high-dose hormone therapies have not achieved satisfactory clinical outcomes, highlighting the need for innovative therapeutic strategies.
Methods: In this study, we developed a Dual-Phase Silk Fibroin Methacryloyl (SilMA) hydrogel scaffold (DPSH) that incorporates PLGA microspheres encapsulating neurotrophin-3 (NT-3) and angiotensin (1-7) (Ang-(1-7)).
ACS Appl Mater Interfaces
December 2024
School of Mechanical and Electric Engineering, Soochow University, Suzhou 215021, China.
Titanium alloys are commonly used for bone grafting, but in mandibular defect repair, implantation possibly fails due to bacterial infection. The establishment of a long-acting drug delivery system through microspheres and titanium channels can reduce the risk of infection. However, there is insufficient research on the mechanism of microsphere attachment and microsphere-liquid two-phase flow in the hydroxyl-functionalized titanium implantation channel modified by a vacuum-drying-assisted laser texturing.
View Article and Find Full Text PDFDrug Dev Ind Pharm
December 2024
Faculty of Pharmaceutics and Pharmaceutical technology, Hanoi University of Pharmacy, Hanoi, Vietnam.
Objective: Poly(lactic--glycolic acid) microsphere containing leuprolide acetate - an extended-release drug delivery system whose characteristics (i.e. loading capacity, particle size and initial burst phase) depend on processing parameters.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
Calcium phosphate cement (CPC) is an injectable bone cement with excellent biocompatibility, widely used for filling bone defects of various shapes. However, its slow degradation, insufficient mechanical strength, and poor osteoinductivity limit its further clinical applications. In this study, we developed a novel composite magnesium-based calcium phosphate cement by integrating magnesium microspheres into PLGA fibers obtained through wet spinning and incorporating these fibers into CPC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!