Carnivorous plants have the ability to capture and digest small animals as a source of additional nutrients, which allows them to grow in nutrient-poor habitats. Here we report the complete sequences of the plastid genomes of two carnivorous plants of the order Caryophyllales, and × . The plastome of is repeat-rich and highly rearranged. It lacks NAD(P)H dehydrogenase genes, as well as and genes, and three essential tRNA genes. Intron losses are observed in some protein-coding and tRNA genes along with a pronounced reduction of RNA editing sites. Only six editing sites were identified by RNA-seq in plastid genome and at most conserved editing sites the conserved amino acids are already encoded at the DNA level. In contrast, the × plastome has a typical structure and gene content, except for pseudogenization of the gene. × and could represent different stages of evolution of the plastid genomes of carnivorous plants, resembling events observed in parasitic plants in the course of the switch from autotrophy to a heterotrophic lifestyle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747624PMC
http://dx.doi.org/10.3390/ijms20174107DOI Listing

Publication Analysis

Top Keywords

carnivorous plants
16
plastid genomes
12
genomes carnivorous
12
editing sites
12
observed parasitic
8
parasitic plants
8
trna genes
8
plants
6
plastid
4
carnivorous
4

Similar Publications

Complex transcription regulation of acidic chitinase suggests fine-tuning of digestive processes in Drosera binata.

Planta

January 2025

Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.

DbChitI-3, Drosera binata's acidic chitinase, peaks at pH 2.5 from 15 °C to 30 °C. Gene expression is stimulated by polysaccharides and suppressed by monosaccharide digestion, implying a feedback loop in its transcriptional regulation.

View Article and Find Full Text PDF

Carnivory in plants is an unusual trait that has arisen multiple times, independently, throughout evolutionary history. Plants in the genus are carnivorous and feed on microorganisms that live in soil using modified subterranean leaf structures (rhizophylls). A surprisingly broad array of microfauna has been observed in the plants' digestive chambers, including ciliates, amoebae, and soil mites.

View Article and Find Full Text PDF

The adaxial leaf surface of butterworts (Pinguicula L.) presents specialized structures for carnivory, such as trichomes and sessile glands. The micromorphology of abaxial leaf surfaces has rarely been investigated; therefore, this study aimed to compare the micromorphology of adaxial and abaxial surfaces through electron scanning microscopy (SEM) and light microscopy (LM).

View Article and Find Full Text PDF

Homogalacturonans and Hemicelluloses in the External Glands of Traps.

Int J Mol Sci

December 2024

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland.

The (bladderworts) species are carnivorous plants that prey mainly on invertebrates using traps (bladders) of leaf origin. On the outer surfaces of the trap, there are dome-shaped glands (capitate trichomes). Each such trichome consists of a basal cell, a pedestal cell, and a terminal cell.

View Article and Find Full Text PDF

Genomic and Transcriptomic Analyses Revealed DdSTE2 Play a Role in Constricting Ring Formation in the Nematode-Trapping Fungi .

Microorganisms

October 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China.

Article Synopsis
  • The study focuses on a carnivorous fungus that captures nematodes by forming constricting rings, a key feature for its carnivorous behavior.
  • Researchers created two mutants unable to form these rings and examined their growth compared to the wild-type strain, revealing differences in metabolic pathways.
  • Key findings highlight the importance of cell wall structure, peroxisomes, lipid metabolism, and MAPK signaling in the formation of constricting rings, which could inform future methods of controlling harmful nematodes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!