The basic leucine zipper () family of transcription factors (TFs) regulate diverse phenomena during plant growth and development and are involved in stress responses and hormone signaling. However, only a few have been functionally characterized. In this paper, 54 maize genes were screened from previously published drought and rewatering transcriptomes. These genes were divided into nine groups in a phylogenetic analysis, supported by motif and intron/exon analyses. The 54 genes were unevenly distributed on 10 chromosomes and contained 18 segmental duplications, suggesting that segmental duplication events have contributed to the expansion of the maize family. Spatio-temporal expression analyses showed that genes are widely expressed during maize development. We identified 10 core involved in protein transport, transcriptional regulation, and cellular metabolism by principal component analysis, gene co-expression network analysis, and Gene Ontology enrichment analysis. In addition, 15 potential stress-responsive ZmbZIPs were identified by expression analyses. Localization analyses showed that , , , and are nuclear proteins. These results provide the basis for future functional genomic studies on TFs in maize and identify candidate genes with potential applications in breeding/genetic engineering for increased stress resistance. These data represent a high-quality molecular resource for selecting resistant breeding materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747360 | PMC |
http://dx.doi.org/10.3390/ijms20174103 | DOI Listing |
Front Plant Sci
December 2024
Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States.
Field pennycress () is a new biofuel winter annual crop with extreme cold hardiness and a short life cycle, enabling off-season integration into corn and soybean rotations across the U.S. Midwest.
View Article and Find Full Text PDFACS Omega
December 2024
Laboratorio de Glicobiología y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México.
The human CMP-sialic acid transporter (hCST) is a mammalian highly conserved type III antiporter that translocates CMP-sialic acid into the Golgi lumen, supporting sialylation. Although different works have focused on elucidating structure-function relationships in the hCST, this is the first study to address them in an alternatively spliced isoform. We have previously reported the expression of a functional human del177 isoform that has skipping of exon 6, resulting in a loss of 59 amino acids, without change in the open reading frame and conserving its C-terminal region.
View Article and Find Full Text PDFPLoS One
December 2024
College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, China.
The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members.
View Article and Find Full Text PDFSci Rep
December 2024
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.
View Article and Find Full Text PDFNat Commun
December 2024
Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!