The layered hydrated sodium salt-magadiite (MAG), which has special interpenetrating petals structure, was used as a functional filler to slowly self-assemble with sodium carboxy-methylcellulose (CMC), in order to prepare nacre-like nanocomposite film by solvent evaporation method. The structure of prepared nacre-like nanocomposite film was characterized by Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis; whereas, it was indicated that CMC macromolecules were inserted between the layers of MAG to increase the layer spacing of MAG by forming an interpenetrating petals structure; in the meantime, the addition of MAG improved the thermal stability of CMC. The tensile strength of CMC/MAG was significantly improved compared with pure CMC. The tensile strength of CMC/MAG reached the maximum value at 1.71 MPa when the MAG content was 20%, to maintaining high transparency. Due to the high content of inorganic filler, the flame retarding performance and the thermal stability were also brilliant; hence, the great biocompatibility and excellent mechanical properties of the bionic nanocomposite films with the unique interpenetrating petals structure provided a great probability for these original composites to be widely applied in material research, such as tissue engineering in biomedical research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780612 | PMC |
http://dx.doi.org/10.3390/polym11091378 | DOI Listing |
ACS Nano
December 2024
Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States.
The surging demand for electronics is causing detrimental environmental consequences through massive electronic waste production. Urgently shifting toward renewable and eco-friendly materials is crucial for fostering a green circular economy. Herein, we develop a multifunctional bionanocomposite using an algae-derived carbohydrate biopolymer (alginate) and boron nitride nanosheet (BNNS) that can be readily employed as a multifunctional dielectric material.
View Article and Find Full Text PDFNanomicro Lett
October 2024
National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China.
Robust, ultra-flexible, and multifunctional MXene-based electromagnetic interference (EMI) shielding nanocomposite films exhibit enormous potential for applications in artificial intelligence, wireless telecommunication, and portable/wearable electronic equipment. In this work, a nacre-inspired multifunctional heterocyclic aramid (HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite paper with large-scale, high strength, super toughness, and excellent tolerance to complex conditions is fabricated through the strategy of HA/MXene hydrogel template-assisted in-situ assembly of PPy. Benefiting from the "brick-and-mortar" layered structure and the strong hydrogen-bonding interactions among MXene, HA, and PPy, the paper exhibits remarkable mechanical performances, including high tensile strength (309.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China; Shaoxing Doctoral Innovation Station, Shaoxing Minsheng Pharmaceutical Co., Ltd., Shaoxing 312000, China. Electronic address:
In this study, novel chitosan/polyethylene oxide/TiCT 2D MXene nanosheets (CS/PEO/TiCT) nanofibers were successfully prepared by a continuous electrospinning process. During the electrospinning process, induced by the syringe tip capillary effects and electric field force, the TiCT nanosheets were aligned along the direction of the nanofiber formation to occur a highly oriented structure. This well-ordered arrangement of the inorganic TiCT nanosheets within the organic polymer matrix nanofiber was similar with nacre-like 'brick-and-motar' structure to some extent, resulting in a marked increase in thermal stability and mechanical properties of the resultant CS/PEO/TiCT nanofiber.
View Article and Find Full Text PDFPhys Chem Chem Phys
July 2024
National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Center for Composite Materials, Harbin Institute of Technology, Harbin, People's Republic of China.
Nacre plays an important role in bionic design due to its light weight, high strength, and structure-function integration. The key to elucidate its reinforcing and toughening mechanisms is to truly characterize its multi-layer structure and properties. In this work, the dynamic impact responses of graphene reinforced polymer nanocomposites with a unique brick-and-mortar structure are investigated using coarse-grained molecular dynamics simulations, in which the interfacial coarse-grained force field between graphene and the polymer matrix is derived by the energy matching approach.
View Article and Find Full Text PDFAdv Sci (Weinh)
July 2024
State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Structural materials such as ceramics, metals, and carbon fiber-reinforced plastics (CFRP) are frequently threatened by large compressive and impact forces. Energy absorption layers, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!