Pancreatic cancer is a highly aggressive manifestation of cancer, and currently presents poor clinical outcome due to its late diagnosis with metastasic disease. Surgery is the only approach with a curative intend; however, the survival rates seen in this type of patient are still low. After surgery, there is a lack of predictive prognosis biomarkers to predict treatment response and survival to establish a personalized medicine. Human P-element-induced wimpy testis 1 (PIWIL1) and P-element-induced wimpy testis 2 (PIWIL2) proteins act as protectors of germline, and their aberrant expression has been described in several types of tumors. In this study, we aimed to assess an association between PIWIL1 and PIWIL2 expression and the prognosis of biliopancreatic cancer patients. For this, we analyzed protein expression in complete resected tumor samples, and found a significant association between PIWIL2 expression and both progression-free and overall survival ( = 0.036 and = 0.012, respectively). However, PIWIL2 expression was significantly associated with progression-free survival ( = 0.029), and overall survival ( = 0.025) of such tumors originated in the pancreas, but not in the bile duct or ampulla of Vater. Further analysis revealed that PIWIL1 and PIWIL2, at both mRNA and protein expression levels, correlated positively with factors associated to the progenitor molecular subtype of pancreatic cancer. Based on these findings, PIWIL1 and PIWIL2 expression may be considered a potential prognostic biomarker for resectable pancreatic cancer and may serve to guide subsequent adjuvant treatment decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780139 | PMC |
http://dx.doi.org/10.3390/jcm8091275 | DOI Listing |
BMC Genom Data
November 2024
Youjiang Medical University for Nationalities, Baise, 533000, China.
This multi-omics study delves into the expression patterns of PIWIL genes and their correlation with hepatocellular carcinoma (HCC) progression, utilizing whole transcriptome sequencing, bioinformatics, and reverse transcription quantitative polymerase chain reaction (RT-qPCR) in mice. We identified differential expression levels of PIWIL genes between HCC and control tissues and analyzed their roles within the competing endogenous RNA (ceRNA) network related to regulatory non-coding RNA-mediated gene silencing (RNGS). Our findings showed that Piwil1 and Piwil4 were overexpressed while Piwil2 is underexpressed.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China.
When PIWIL2 expression is restored via heterogeneous integration of human papillomavirus, cellular reprogramming is initiated to form tumor-initiating cells (TICs), which triggers cervical squamous intraepithelial lesions (SIL). TIC stemness is critical for the prognosis of SIL. However, the mechanisms underlying TIC stemness maintenance and tumorigenicity remain unclear.
View Article and Find Full Text PDFSci Rep
October 2024
Functional Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay.
Mamm Genome
December 2024
Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
Animals (Basel)
September 2024
College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
Gametogenesis, the intricate developmental process responsible for the generation of germ cells (gametes), serves as a fundamental prerequisite for the perpetuation of the reproductive cycle across diverse organisms. The enzyme is a putative ubiquitin E3 ligase implicated in the intricate regulatory mechanisms underlying cellular proliferation and division processes. The present study delves into the function of G2/M phase-specific E3 ubiquitin protein ligase () in gametogenesis in Chinese Tongue Sole ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!