Myelin protein 2 (P2) is a peripheral membrane protein of the vertebrate nervous system myelin sheath, having possible roles in both lipid transport and 3D molecular organization of the multilayered myelin membrane. We extended our earlier crystallographic studies on human P2 and refined its crystal structure at an ultrahigh resolution of 0.72 Å in perdeuterated form and 0.86 Å in hydrogenated form. Characteristic differences in C-H…O hydrogen bond patterns were observed between extended β strands, kinked or ending strands, and helices. Often, side-chain C-H groups engage in hydrogen bonding with backbone carbonyl moieties. The data highlight several amino acid residues with unconventional conformations, including both bent aromatic rings and twisted guanidinium groups on arginine side chains, as well as non-planar peptide bonds. In two locations, such non-ideal conformations cluster, providing proof of local functional strain. Other ultrahigh-resolution protein structures similarly contain chemical groups, which break planarity rules. For example, in Src homology 3 (SH3) domains, a conserved bent aromatic residue is observed near the ligand binding site. Fatty acid binding protein (FABP) 3, belonging to the same family as P2, has several side chains and peptide bonds bent exactly as those in P2. We provide a high-resolution snapshot on non-ideal conformations of amino acid residues under local strain, possibly relevant to biological function. Geometric outliers observed in ultrahigh-resolution protein structures are real and likely relevant for ligand binding and conformational changes. Furthermore, the deuteration of protein and/or solvent are promising variables in protein crystal optimization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749445 | PMC |
http://dx.doi.org/10.3390/molecules24173044 | DOI Listing |
Sensors (Basel)
December 2024
National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130025, China.
Depth completion is widely employed in Simultaneous Localization and Mapping (SLAM) and Structure from Motion (SfM), which are of great significance to the development of autonomous driving. Recently, the methods based on the fusion of vision transformer (ViT) and convolution have brought the accuracy to a new level. However, there are still two shortcomings that need to be solved.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mathematics and Systems Science, Xinjiang University, Urumqi , 830046, China.
ν-one-class support vector classification (ν-OCSVC) has garnered significant attention for its remarkable performance in handling single-class classification and anomaly detection. Nonetheless, the model does not yield a unique decision boundary, and potentially compromises learning performance when the training data is contaminated by some outliers or mislabeled observations. This paper presents a novel C-parameter version of bounded one-class support vector classification (C-BOCSVC) to determine a unique decision boundary.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Institute of Concrete Structures, TUD Dresden University of Technology, 01062 Dresden, Germany.
Because of their high spatial resolution over extended lengths, distributed fiber optic sensors (DFOS) enable us to monitor a wide range of structural effects and offer great potential for diverse structural health monitoring (SHM) applications. However, even under controlled conditions, the useful signal in distributed strain sensing (DSS) data can be concealed by different types of measurement principle-related disturbances: strain reading anomalies (SRAs), dropouts, and noise. These disturbances can render the extraction of information for SHM difficult or even impossible.
View Article and Find Full Text PDFPhys Med
September 2024
Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan. Electronic address:
Purpose: To demonstrate the possibility of using a lower imaging rate while maintaining acceptable accuracy by applying motion prediction to minimize the imaging dose in real-time image-guided radiation therapy.
Methods: Time-series of three-dimensional internal marker positions obtained from 98 patients in liver stereotactic body radiation therapy were used to train and test the long-short-term memory (LSTM) network. For real-time imaging, the root mean squared error (RMSE) of the prediction on three-dimensional marker position made by LSTM, the residual motion of the target under respiratory-gated irradiation, and irradiation efficiency were evaluated.
Bioengineering (Basel)
August 2024
Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
Medical image registration has become pivotal in recent years with the integration of various imaging modalities like X-ray, ultrasound, MRI, and CT scans, enabling comprehensive analysis and diagnosis of biological structures. This paper provides a comprehensive review of registration techniques for medical images, with an in-depth focus on 2D-2D image registration methods. While 3D registration is briefly touched upon, the primary emphasis remains on 2D techniques and their applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!