AI Article Synopsis

  • Visual querying helps users interactively explore large amounts of trajectory data, but data uncertainty creates challenges for advanced analytics.
  • Many datasets lack precise geographic coordinates, relying instead on broader regions like mobile cell stations, complicating data accuracy.
  • The proposed visual analytics approach extracts spatial-temporal constraints from natural language sentences, enabling effective queries over uncertain mobile trajectory data and providing a user-friendly interface for visualization and exploration.

Article Abstract

Visual querying is essential for interactively exploring massive trajectory data. However, the data uncertainty imposes profound challenges to fulfill advanced analytics requirements. On the one hand, many underlying data does not contain accurate geographic coordinates, e.g., positions of a mobile phone only refer to the regions (i.e., mobile cell stations) in which it resides, instead of accurate GPS coordinates. On the other hand, domain experts and general users prefer a natural way, such as using a natural language sentence, to access and analyze massive movement data. In this paper, we propose a visual analytics approach that can extract spatial-temporal constraints from a textual sentence and support an effective query method over uncertain mobile trajectory data. It is built up on encoding massive, spatially uncertain trajectories by the semantic information of the POls and regions covered by them, and then storing the trajectory documents in text database with an effective indexing scheme. The visual interface facilitates query condition specification, situation-aware visualization, and semantic exploration of large trajectory data. Usage scenarios on real-world human mobility datasets demonstrate the effectiveness of our approach.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2019.2934671DOI Listing

Publication Analysis

Top Keywords

trajectory data
12
data
6
natural-language-based visual
4
visual query
4
query approach
4
approach uncertain
4
uncertain human
4
human trajectories
4
trajectories visual
4
visual querying
4

Similar Publications

In this comprehensive review, we delve into the transformative role of artificial intelligence (AI) in refining the application of multi-omics and spatial multi-omics within the realm of diffuse large B-cell lymphoma (DLBCL) research. We scrutinized the current landscape of multi-omics and spatial multi-omics technologies, accentuating their combined potential with AI to provide unparalleled insights into the molecular intricacies and spatial heterogeneity inherent to DLBCL. Despite current progress, we acknowledge the hurdles that impede the full utilization of these technologies, such as the integration and sophisticated analysis of complex datasets, the necessity for standardized protocols, the reproducibility of findings, and the interpretation of their biological significance.

View Article and Find Full Text PDF

Single-Cell Sequencing and Machine Learning Integration to Identify Candidate Biomarkers in Psoriasis: .

J Inflamm Res

December 2024

Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, People's Republic of China.

Background: Psoriasis represents a persistent, immune-driven inflammatory condition affecting the skin, characterized by a lack of well-established biologic treatments without adverse events. Consequently, the identification of novel targets and therapeutic agents remains a pressing priority in the field of psoriasis research.

Methods: We collected single-cell RNA sequencing (scRNA-seq) datasets and inferred T cell differentiation trajectories through pseudotime analysis.

View Article and Find Full Text PDF

Purpose: Highly sensitized patients (HSPs) with kidney failure have limited access to kidney transplantation and poorer post-transplant outcomes. Prioritizing HSPs in kidney allocation systems and expanding the pool of deceased donors available to them has helped to reduce their wait times for transplant and enhanced post-transplant outcomes. The Canadian HSP Program was established by Canadian Blood Services in collaboration with provincial organ donation and transplantation programs throughout the country to increase transplant opportunities for transplant candidates needing very specific matches from deceased kidney donors.

View Article and Find Full Text PDF

Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood.

View Article and Find Full Text PDF

A fine-grained understanding of dynamics in cortical networks is crucial to unpacking brain function. Resting-state functional magnetic resonance imaging (fMRI) gives rise to time series recordings of the activity of different brain regions, which are aperiodic and lack a base frequency. Cyclicity analysis, a novel technique robust under time reparametrizations, is effective in recovering the temporal ordering of such time series, collectively considered components of a multidimensional trajectory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!