Protein secondary structure prediction using neural networks and deep learning: A review.

Comput Biol Chem

Institute for Sustainable Industries and Liveable Cities, Victoria University Melbourne, Victoria, Australia; Institute for Integrated and Intelligent Systems, Griffith University, Queensland, Australia. Electronic address:

Published: August 2019

Literature contains over fifty years of accumulated methods proposed by researchers for predicting the secondary structures of proteins in silico. A large part of this collection is comprised of artificial neural network-based approaches, a field of artificial intelligence and machine learning that is gaining increasing popularity in various application areas. The primary objective of this paper is to put together the summary of works that are important but sparse in time, to help new researchers have a clear view of the domain in a single place. An informative introduction to protein secondary structure and artificial neural networks is also included for context. This review will be valuable in designing future methods to improve protein secondary structure prediction accuracy. The various neural network methods found in this problem domain employ varying architectures and feature spaces, and a handful stand out due to significant improvements in prediction. Neural networks with larger feature scope and higher architecture complexity have been found to produce better protein secondary structure prediction. The current prediction accuracy lies around the 84% marks, leaving much room for further improvement in the prediction of secondary structures in silico. It was found that the estimated limit of 88% prediction accuracy has not been reached yet, hence further research is a timely demand.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2019.107093DOI Listing

Publication Analysis

Top Keywords

protein secondary
16
secondary structure
16
structure prediction
12
neural networks
12
prediction accuracy
12
prediction neural
8
secondary structures
8
artificial neural
8
prediction
7
neural
5

Similar Publications

This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.

View Article and Find Full Text PDF

Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting.

View Article and Find Full Text PDF

Importance: The D842V platelet-derived growth factor receptor α (PDGFRA) mutation identifies a molecular subgroup of gastrointestinal stromal tumors (GISTs), primarily resistant to standard tyrosine kinase inhibitors and with an overall more indolent behavior. Although functional imaging with 18F-fluorodeoxyglucose-labeled positron emission tomography ([18F]FDG-PET) plays a proven role in GISTs, especially in early assessment of tumor response, less is known about [18F]FDG uptake according to the GIST molecular subtypes.

Objective: To evaluate the degree of [18F]FDG uptake in PDGFRA-mutant GISTs and better define the role of functional imaging in this rare and peculiar subset of GISTs.

View Article and Find Full Text PDF

WFDC3 sensitizes colorectal cancer to chemotherapy by regulating ATM/ATR kinase signaling pathway.

FASEB J

January 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China.

Chemoresistance is an ongoing challenge for colorectal cancer (CRC) that significantly compromises the anti-tumor efficacy of current drugs. Identifying effective targets or drugs for overcoming chemoresistance is urgently needed. Our previous study showed that WFDC3 served as a tumor suppressor that hindered CRC metastasis.

View Article and Find Full Text PDF

The clinical effects and mechanism of action of ranibizumab in treating myopic choroidal neovascularization.

Int Ophthalmol

January 2025

Department of Ophthalmology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215008, Jiangsu, China.

Purpose: Myopic choroidal neovascularization (CNV) is a common reason for visual impairment. This study investigated the clinical effects of repeated intravitreal injections of ranibizumab among patients with CNV secondary to pathologic myopia.

Methods: This study involved a single-center, non-randomized clinical prospective cohort research design including 39 patients with myopic CNV and a control group of 10 patients with cataract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!