Leishmaniases, caused by Leishmania spp., are among the most prevalent infectious diseases in the world and their treatment may present high toxicity and side/adverse effects. This study evaluated the antileishmanial activity of the Hexanic Eluate subfraction from Maytenus guianensis bark (HEMg) incorporated in microparticles of PLGA. One batch of microparticles produced contained HEMg (HEMgP) and another contained the PLGA polymer alone (PCTE). The microparticles were characterized in regards to diameter, Zeta potential, encapsulation rate and morphology and their cytotoxicity was evaluated against J774 macrophages. The infection assay employing peritoneal macrophages witth L. amazonensis and cytokine dosages were performed on the cell supernatants. The groups of infected BALB/C mice were treated, euthanized and the parasite load and cytokine production were evaluated. The diameters and zeta potential were: 4 μm and -11.6 mV (PCTE) and 7.8 μm and -26.7 mV (HEMgP). The encapsulation rate was ≅ 15% and the morphology of the particles was spherical and homogeneous. In the infection assay, HEMgP inhibited the amastigotes by 70% (24 h) and 59% (48 h) and induced IL-12 and TNF-α production. HEMg in solution reduced the number of parasites in the lymph nodes by 50% and HEMgP administration increased the levels of IL-12 and TNF-α cytokines in lymph nodes and in the lesion site. When encapsulated, HEMg maintained its antileishmanial activity, but in a more attenuated and sustained form over time, showing promise as complementary/alternative therapy against cutaneous leishmaniasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exppara.2019.107738 | DOI Listing |
Exp Parasitol
January 2025
Department of Biotechnology, Savitribai Phule Pune University, Pune-411007, India. Electronic address:
Visceral leishmaniasis (VL) is an opportunistic infection in HIV patients with higher relapse and mortality rate. The number of HIV-VL patients is comparatively higher in areas where both infections are endemic. However, the conventional chemotherapeutic agents have limited success due to drug toxicity, efficacy variance and overall cost of treatment.
View Article and Find Full Text PDFMolecules
January 2025
Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru.
Leishmaniasis, a neglected tropical disease caused by species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against , , and , comparing their effects to amphotericin B (AmpB), a standard drug. Malvidin demonstrated greater potency than echioidinin across all parasite stages and species.
View Article and Find Full Text PDFMini Rev Med Chem
January 2025
Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia.
Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas.
View Article and Find Full Text PDFPharmaceutics
December 2024
PostGraduate Program in Chemistry, Center for Exact Sciences and Technology (CCET), UFMA-Federal University of Maranhão, São Luís 65080-805, Brazil.
Leishmaniasis, caused by protozoa of the genus , is a major global health issue due to the limitations of current treatments, which include low efficacy, high costs, and severe side effects. This study aimed to develop a more effective and less toxic therapy by utilizing zein nanoparticles (ZNPs) in combination with a nonpolar fraction (DCMF) from (Syn. ), a plant rich in dimeric flavonoids called brachydins.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Chemistry, Illinois State University, Normal, IL 61790, USA.
Sulfonamide drugs were the original class of antibiotics, demonstrating the antibacterial potential of dithiocarbazate and thiosemicarbazone Schiff base derivatives of syringaldehyde and 4-hydroxy-3,5-dimethylbenzaldehyde. We synthesized unique Schiff bases via the condensation of the aldehydes with hydrazine derivatives, which allows for the easy synthesis of several related compounds. These Schiff base derivatives were tested for antileishmanial properties against the parasitic protozoan .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!