In vitro embryo production success in juvenile animals is compromised due to their intrinsic lower oocyte quality. Conventional in vitro maturation (IVM) impairs oocyte competence by inducing spontaneous meiotic resumption. A series of experiments were performed to determine if maintaining meiotic arrest during a pre-maturation culture phase (pre-IVM) prior to conventional IVM improves oocyte competence of juvenile-goat (2 months old) cumulus-oocyte complexes (COCs). In experiment 1, COCs were cultured with C-type natriuretic peptide (CNP; 0, 50, 100, 200 nM) for 6 and 8 h. Nuclear stage was assessed, revealing no differences in the incidence of germinal vesicle (GV) breakdown. In experiment 2, the same CNP concentrations were assessed plus 10 nM estradiol, the known upstream agonist activating expression of NPR2, the exclusive receptor of CNP. CNP (200 nM) plus estradiol increased the rate of oocytes at GV stage at 6 h compared to control group (74.7% vs 28.3%; P<0.05) with predominantly condensed chromatin configuration. In experiment 3, relative mRNA quantification revealed NPR2 expression was down-regulated after pre-IVM (6 h). In experiment 4, analysis of transzonal projections indicated that pre-IVM maintained cumulus-oocyte communication after oocyte recovery. For experiments 5 and 6, biphasic IVM (6 h pre-IVM with CNP and estradiol, plus 24 h IVM) and control IVM (24 h) were compared. Biphasic IVM increased intra-oocyte glutathione and decreased ROS, up-regulated DNA-methyltransferase 1 and pentraxin 3 expression and led to an increase in rate of blastocyst development compared to control group (30.2% vs 17.2%; P<0.05). In conclusion, a biphasic IVM, including a pre-IVM with CNP, maintains oocyte meiotic arrest for 6 h and enhances the embryo developmental competence of oocytes from juvenile goats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707569 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221663 | PLOS |
Cancer Res
January 2025
Yale University, New Haven, CT, United States.
Biomolecular condensation has emerged as a general principle in organizing biological processes, including immune response. Xu and colleagues recently reported that the cytoplasmic tail of the CD3ɛ subunit of TCR complex, when fused to CAR, can promote CAR condensation by liquid-liquid phase separation. Through sequence engineering, the authors identified modified CD3ɛ sequences that enhance the maturation of the immunological synapse and co-receptor signaling, leading to an improvement of cytotoxicity in vitro and anti-tumor effects in mouse xenograft models.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Barts Cancer Institute, Queen Mary University of London;
Erythropoiesis, a remarkably dynamic and efficient process responsible for generating the daily quota of red blood cells (approximately 280 ± 20 billion cells per day), is crucial for maintaining individual health. Any disruption in this pathway can have significant consequences, leading to health issues. According to the World Health Organization, an estimated 25% of the global population presents symptoms of anemia.
View Article and Find Full Text PDFDis Model Mech
January 2025
Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands.
Hepatic organoid cultures are a powerful model to study liver development and diseases in vitro. However, hepatocyte-like cells differentiated from these organoids remain immature compared to primary human hepatocytes (PHHs), which are the benchmark in the field. Here, we applied integrative single-cell transcriptome and chromatin accessibility analysis to reveal gene regulatory mechanisms underlying these differences.
View Article and Find Full Text PDFReprod Domest Anim
February 2025
Veterinary Embryology Laboratory, Professional School of Veterinary Medicine, Universidad Nacional de San Antonio Abad del Cusco, Sicuani-Cusco, Peru.
Currently, incubators with a time-lapse system are widely used for in vitro embryo production in several species, however, their effect on alpaca embryo development compared to conventional incubators remains unknown. The aim of this study was to compare early in vitro embryo development in alpacas using a time-lapse incubator system versus a conventional incubator. Ovaries were obtained from a slaughterhouse and 1048 cumulus-oocyte complexes (COCs) were collected and in vitro matured for 26 h in either a time-lapse system (n = 542) or a conventional incubator (n = 542).
View Article and Find Full Text PDFIn Vitro Model
February 2024
Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588 Japan.
Unlabelled: Engineered three-dimensional (3D) tissue culture platforms are useful for reproducing and elucidating complex in vivo biological phenomena. Spheroids, 3D aggregates of living cells, are produced based on physicochemical or microfabrication technologies and are commonly used even in cancer pathology research. However, conventional methods have difficulties in constructing 3D structures depending on the cell types, and require specialized techniques/lab know-how to reproducibly control the spheroid size and shape.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!