Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aptamers are oligonucleotide sequences that can be evolved to bind to various analytes of interest. Here, we present a general design strategy that transduces an aptamer-target binding event into a fluorescence readout via the use of a viscosity-sensitive dye. Target binding to the aptamer leads to forced intercalation (FIT) of the dye between oligonucleotide base pairs, increasing its fluorescence by up to 20-fold. Specifically, we demonstrate that FIT-aptamers can report target presence through intramolecular conformational changes, sandwich assays, and target-templated reassociation of split-aptamers, showing that the most common aptamer-target binding modes can be coupled to a FIT-based readout. This strategy also can be used to detect the formation of a metallo-base pair within a duplexed strand and is therefore attractive for screening for metal-mediated base pairing events. Importantly, FIT-aptamers reduce false-positive signals typically associated with fluorophore-quencher based systems, quantitatively outperform FRET-based probes by providing up to 15-fold higher signal to background ratios, and allow rapid and highly sensitive target detection (nanomolar range) in complex media such as human serum. Taken together, FIT-aptamers are a new class of signaling aptamers which contain a single modification, yet can be used to detect a broad range of targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777339 | PMC |
http://dx.doi.org/10.1021/jacs.9b06450 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!