[Research progress on metabolic reprogramming of innate immune cells involved in immune-regulation of sepsis].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai 200062, China. Corresponding author: Zhang Yucai, Email:

Published: July 2019

Immunosuppression plays a critical role in death of sepsis. Innate immunity is the first line defense to prevent pathogen invasion, and neutrophils, macrophages, dendritic cells and natural killer cells (NK cells) are closely involved in the process of the immune-regulation during sepsis. Recently, metabolic reprogramming in immune cells is known as a keystone for immune intervention therapy in sepsis. Here, we focus on the recent advances in metabolic regulation in neutrophils, macrophages, dendritic cells and NK cells including glycolysis, fatty acid synthesis, fatty acid oxidation and arginine metabolism involved in the immune-regulation of sepsis. This review will be helpful to summarize the mechanisms underlying sepsis-induced immunosuppression.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.issn.2095-4352.2019.07.023DOI Listing

Publication Analysis

Top Keywords

metabolic reprogramming
8
immune cells
8
involved immune-regulation
8
neutrophils macrophages
8
macrophages dendritic
8
dendritic cells
8
cells cells
8
immune-regulation sepsis
8
fatty acid
8
cells
7

Similar Publications

Metabolic reprogramming induced by PSMA4 overexpression facilitates bortezomib resistance in multiple myeloma.

Ann Hematol

January 2025

Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.

Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established.

View Article and Find Full Text PDF

Metabolic reprogramming is considered one of the hallmarks of cancer in which cancer cells reprogram some of their metabolic cascades, mostly driven by the specific chemical microenvironment in cancer tissues. The altered metabolic pathways are increasingly being considered as potential targets for cancer therapy. In this view, Aldolase A (ALDOA), a key glycolytic enzyme, has been validated as a candidate oncogene in several cancers.

View Article and Find Full Text PDF

Metabolic reprogramming, malignant transformation and metastasis: lessons from chronic lymphocytic leukaemia and prostate cancer.

Cancer Lett

January 2025

Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland. Electronic address:

Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis.

View Article and Find Full Text PDF

Targeting lipid metabolism via nanomedicine: A prospective strategy for cancer therapy.

Biomaterials

December 2024

Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:

Lipid metabolism has been increasingly recognized to play an influencing role in tumor initiation, progression, metastasis, and therapeutic drug resistance. Targeting lipid metabolic reprogramming represents a promising therapeutic strategy. Despite their structural complexity and poor targeting efficacy, lipid-metabolizing drugs, either used alone or in combination with chemotherapeutic agents, have been employed in clinical practice.

View Article and Find Full Text PDF

Microplastics induce human kidney development retardation through ATP-mediated glucose metabolism rewiring.

J Hazard Mater

December 2024

Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Recent research has revealed an accumulation of microplastics (MPs) in the environment and human tissues, giving rise to concerns about their potential toxicity. The kidney is a vital organ responsible for various physiological functions. Early kidney development is crucial for ensuring proper structure and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!