A series of aminobenzoquinones, denoted as PQ analogs (PQ1-13), were synthesized by employing a green methodology approach using water as solvent developed by Tandon et al. Subsequently, in vitro antimicrobial potential of all PQ analogs was evaluated in a panel of seven bacterial strains (three gram positive and four gram negative bacteria) and three fungi. The antifungal profile of all PQ analogs indicated that four analogs (while PQ2, PQ9, and PQ10 were effective against Candida tropicalis, PQ11 is effective against Candida albicans) have potent antifungal activity. The results revealed that PQ9 showed similar antibacterial activity against Staphylococcus epidermidis compared clinically prevalent antibacterial drugs cefuroxime. PQ11 exhibited the highest antibacterial activity against S. epidermidis, which was about fourfold better than that of cefuroxime. Owing to their outstanding activities, PQ9 and PQ11 were chosen for a further investigation for biofilm and cytotoxicity evaluation. Based on the tests performed, there was a significant positive correlation between inhibition of the biofilm attachment and time. In addition, PQ9 and PQ11 showed cytotoxic effects at high concentrations on Balb/3T3, HaCaT, HUVEC, and NRK-52E cells (>24 and >18 μg/mL, respectively). Thus, two analogs (PQ9 and PQ11) were identified as the hits with the strong antibacterial efficiency against the S. epidermidis with low MIC values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ddr.21591 | DOI Listing |
Chem Biol Interact
November 2021
Department of Chemistry, Faculty of Science, Istanbul University, Fatih, Istanbul, Turkey. Electronic address:
2,3-Dimethyl-1,4-benzoquinones named as Plastoquinone (PQ) analogs have antiproliferative activity and are promising new members of molecules that can be used to cope with cancer. In an attempt to develop effective and potentially safe antiproliferative agents, previously reported twelve Plastoquinone analogs (PQ1-12) have been obtained to understand their antiproliferative profile. All PQ analogs have been selected by the National Cancer Institute (NCI) of Bethesda based on the NCI Developmental Therapeutics Program and tested against the panel of 60 cancer cell lines.
View Article and Find Full Text PDFFolia Microbiol (Praha)
October 2020
Department of Chemistry, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
Infectious diseases are the significant global health problem because of drug resistance to most classes of antimicrobials. Interest is growing in the development of new antimicrobials in pharmaceutical discovery. For that reason, the urgency for scientists to find and/or develop new important molecules is needed.
View Article and Find Full Text PDFDrug Dev Res
December 2019
Pharmaceutical Microbiology Department, Pharmacy Faculty, Istanbul University, Istanbul, Turkey.
A series of aminobenzoquinones, denoted as PQ analogs (PQ1-13), were synthesized by employing a green methodology approach using water as solvent developed by Tandon et al. Subsequently, in vitro antimicrobial potential of all PQ analogs was evaluated in a panel of seven bacterial strains (three gram positive and four gram negative bacteria) and three fungi. The antifungal profile of all PQ analogs indicated that four analogs (while PQ2, PQ9, and PQ10 were effective against Candida tropicalis, PQ11 is effective against Candida albicans) have potent antifungal activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!