To develop an automatic treatment planning system for whole breast radiation therapy (WBRT) based on two intensity-modulated tangential fields, enabling near-real-time planning. A total of 40 WBRT plans from a single institution were included in this study under IRB approval. Twenty WBRT plans, 10 with single energy (SE, 6MV) and 10 with mixed energy (ME, 6/15MV), were randomly selected as training dataset to develop the methodology for automatic planning. The rest 10 SE cases and 10 ME cases served as validation. The auto-planning process consists of three steps. First, an energy prediction model was developed to automate energy selection. This model establishes an anatomy-energy relationship based on principle component analysis (PCA) of the gray level histograms from training cases' digitally reconstructed radiographs (DRRs). Second, a random forest (RF) model generates an initial fluence map using the selected energies. Third, the balance of overall dose contribution throughout the breast tissue is realized by automatically selecting anchor points and applying centrality correction. The proposed method was tested on the validation dataset. Non-parametric equivalence test was performed for plan quality metrics using one-sided Wilcoxon Signed-Rank test. For validation, the auto-planning system suggested same energy choices as clinical-plans in 19 out of 20 cases. The mean (standard deviation, SD) of percent target volume covered by 100% prescription dose was 82.5% (4.2%) for auto-plans, and 79.3% (4.8%) for clinical-plans ( > 0.999). Mean (SD) volume receiving 105% Rx were 95.2 cc (90.7 cc) for auto-plans and 83.9 cc (87.2 cc) for clinical-plans ( = 0.108). Optimization time for auto-plan was <20 s while clinical manual planning takes between 30 min and 4 h. We developed an automatic treatment planning system that generates WBRT plans with optimal energy selection, clinically comparable plan quality, and significant reduction in planning time, allowing for near-real-time planning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693433PMC
http://dx.doi.org/10.3389/fonc.2019.00750DOI Listing

Publication Analysis

Top Keywords

automatic planning
8
breast radiation
8
radiation therapy
8
wbrt plans
8
plans single
8
validation auto-planning
8
energy
5
planning breast
4
therapy machine
4
machine learning
4

Similar Publications

Automatic 4D mitral valve segmentation from transesophageal echocardiography: a semi-supervised learning approach.

Med Biol Eng Comput

January 2025

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Performing automatic and standardized 4D TEE segmentation and mitral valve analysis is challenging due to the limitations of echocardiography and the scarcity of manually annotated 4D images. This work proposes a semi-supervised training strategy using pseudo labelling for MV segmentation in 4D TEE; it employs a Teacher-Student framework to ensure reliable pseudo-label generation. 120 4D TEE recordings from 60 candidates for MV repair are used.

View Article and Find Full Text PDF

Automatic Parking Trajectory Planning Based on Warm Start Nonlinear Dynamic Optimization.

Sensors (Basel)

December 2024

Xi'an Aerospace Chemical Propulsion Co., Ltd., Xi'an 710089, China.

In this paper, we propose an optimal parking path planning method based on numerical solving, which leverages the concept of the distance between convex sets. The obstacle avoidance constraints were transformed into continuous, smooth nonlinear constraints using the Lagrange dual function. This approach enables the determination of a globally optimal parking path while satisfying vehicular kinematic constraints.

View Article and Find Full Text PDF

Automatic Reproduction of Natural Head Position in Orthognathic Surgery Using a Geometric Deep Learning Network.

Diagnostics (Basel)

December 2024

Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.

: Accurate determination of the natural head position (NHP) is essential in orthognathic surgery for optimal surgical planning and improved patient outcomes. However, traditional methods encounter reproducibility issues and rely on external devices or patient cooperation, potentially leading to inaccuracies in the surgical plan. : To address these limitations, we developed a geometric deep learning network (NHP-Net) to automatically reproduce NHP from CT scans.

View Article and Find Full Text PDF

Modeling Mastitis Risk Management Effects on Dairy Milk Yield and Global Warming Potential.

Animals (Basel)

December 2024

One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, 20133 Milan, Italy.

Mastitis represents a significant challenge for dairy farming, resulting in economic losses and environmental impacts. This study assesses a model for the evaluation of the impact of mastitis on dairy productivity and Global Warming Potential (GWP) under diverse management scenarios. The model considers a range of factors, including bedding materials, milking systems, health surveillance, and overcrowding.

View Article and Find Full Text PDF

Scapular morphological attributes show promise as prognostic indicators of retear following rotator cuff repair. Current evaluation techniques using single-slice magnetic-resonance imaging (MRI) are, however, prone to error, while more accurate computed tomography (CT)-based three-dimensional techniques, are limited by cost and radiation exposure. In this study we propose deep learning-based methods that enable automatic scapular morphological analysis from diagnostic MRI despite the anisotropic resolution and reduced field of view, compared to CT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!