Plastic composited corn silk was developed as a biotic/abiotic carrier for biofilm formation for the purpose of ethanol production. Furthermore, we explored the use of rice straw hydrolysate as substrate in both multistage continuous culture and repeated batch processes and compared the ethanol production efficiency by two strains of . Biofilm formed by bacterial strains ZM4 and TISTR551 were detected, and its proficiencies were compared under various conditions by scanning electron microscopy (SEM) and crystal violet assays. The greatest biofilm formed by both strains was found on day five after the inoculation. strain ZM4 grown in repeated batch biofilm reactors produced higher yields of ethanol than TISTR551 grown under the same conditions, while TISTR551 produced higher yields of ethanol in the multistage continuous process. The yields were highly maintained, with no significant differences ( < 0.05) among the three consecutive repeated batches. These experiments highlight exciting uses for agricultural byproducts in the production of ethanol using biofilm reactors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693309PMC
http://dx.doi.org/10.3389/fmicb.2019.01777DOI Listing

Publication Analysis

Top Keywords

ethanol production
12
repeated batch
12
rice straw
8
straw hydrolysate
8
batch processes
8
multistage continuous
8
biofilm formed
8
biofilm reactors
8
produced higher
8
higher yields
8

Similar Publications

A simple, rapid, and reproducible high-performance liquid chromatography (HPLC) method has been developed and validated for the determination of β-sitosterol in the pharmaceutical dosage form of moist exposed burn ointment (MEBO). This method involved an effective sample procedure for extraction of β-sitosterol from MEBO using an alkali saponification agent composed of 0.8 N ethanolic NaOH and diethyl ether.

View Article and Find Full Text PDF

The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.

View Article and Find Full Text PDF

Low-temperature catalytic oxidation of ethanol over doped nickel phosphates.

Environ Sci Pollut Res Int

January 2025

Laboratory of Coordination and Analytical Chemistry (LCCA), Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, Ben Maachou Road, B.P: 20, 24000, El Jadida, Morocco.

This work is focused on the synthesis and performance of Ni(PO)-based catalysts doped with Cu, Co, Mn, Ce, Zr, and Mg for the complete oxidation of ethanol, aiming at reducing emissions from ethanol-blended gasoline. Nickel phosphate was prepared via the co-precipitation method, followed by impregnation with the specified dopants. The catalysts were thoroughly characterized by XRD, N-physisorption, XRF, FTIR and Raman spectroscopy, FESEM, NH-TPD, CO-TPD, and H-TPR to explain their performance.

View Article and Find Full Text PDF

Maejo 341 Sweet potato (MSP) is a new purple sweet potato variety cultivated in Northern Thailand, but its health benefits are unknown. This study aimed to investigate its antioxidant, anti-inflammatory, and anti-osteoporotic activities, as well as its anthocyanin content. The peel and flesh of MSP were extracted with ethanol and water.

View Article and Find Full Text PDF

In vitro analysis of composition profiles of resins for 3D printing of dentures.

J Dent

January 2025

Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland. Electronic address:

Objective: This study aimed to investigate the resin compounds from CAD-CAM 3D-printed denture resins, focusing on the identification and classification of free monomers and other components. The primary objective was to determine the chemical profile of these 3D-prinding resin materials.

Methods: Four 3D-printed denture resins, two base materials (1: DentaBASE, Asiga Ltd.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!