The two-step process account of negation understanding posits an initial representation of the negated events, followed by a representation of the actual state of events. On the other hand, behavioral and neurophysiological studies provided evidence that linguistic negation suppresses or reduces the activation of the negated events, contributing to shift attention to the actual state of events. However, the specific mechanism of this suppression is poorly known. Recently, based on the brain organization principle of neural reuse (Anderson, 2010), it has been proposed that understanding linguistic negation partially relies upon the neurophysiological mechanisms of response inhibition. Specifically, it was reported that negated action-related sentences modulate EEG signatures of response inhibition (de Vega et al., 2016; Beltrán et al., 2018). In the current EEG study, we ponder whether the reusing of response inhibition processes by negation is constrained to action-related contents or consists of a more general-purpose mechanism. To this end, we employed the same dual-task paradigm as in our prior study-a Go/NoGo task embedded into a sentence comprehension task-but this time including both action and non-action sentences. The results confirmed that the increase of theta power elicited by NoGo trials was modulated by negative sentences, compared to their affirmative counterparts, and this polarity effect was statistically similar for both action- and non-action-related sentences. Thus, a general-purpose inhibitory control mechanism, rather than one specific for action language, is likely operating in the comprehension of sentential negation to produce the transition between alternative representations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694754PMC
http://dx.doi.org/10.3389/fpsyg.2019.01782DOI Listing

Publication Analysis

Top Keywords

response inhibition
12
sentential negation
8
negated events
8
actual state
8
state events
8
linguistic negation
8
negation
6
brain inhibitory
4
inhibitory mechanisms
4
mechanisms involved
4

Similar Publications

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

Copper Chelate Targeting Externalized Phosphatidylserine Inhibits PD-L1 Expression and Enhances Cancer Immunotherapy.

J Am Chem Soc

January 2025

Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China.

Inhibitors of the PD-1/PD-L1 immune checkpoint have revolutionized cancer treatment. However, the clinical response remains limited, with only 20% of patients benefiting from treatment and approximately 60% of PD-L1-positive patients exhibiting resistance. One key factor contributing to resistance is the externalization of phosphatidylserine (PS) on the surface of cancer cells, which suppresses immune responses and promotes PD-L1 expression, further hindering the efficacy of PD-L1 blockade therapies.

View Article and Find Full Text PDF

Cascade-Responsive Nanoparticles for Efficient CRISPR/Cas9-Based Glioblastoma Gene Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.

CRISPR/Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing technology represents great promise for treating glioblastoma (GBM) due to its potential to permanently eliminate tumor pathogenic genes. Unfortunately, delivering CRISPR to the GBM in a safe and effective manner is challenging. Herein, a glycosylated and cascade-responsive nanoparticle (GCNP) that can effectively cross the blood-brain barrier (BBB) and activate CRISPR/Cas9-based gene editing only in the GBM is designed.

View Article and Find Full Text PDF

Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs), known for their exceptional in situ encapsulation and precise release capabilities, are emerging as pioneering drug delivery systems. This study introduces a hypoxia-responsive COF designed to encapsulate the chemotherapy drug gambogic acid (GA) in situ. Bimetallic gold-palladium islands were grown on UiO-66-NH (UiO) to form UiO@Au-Pd (UAPi), which were encapsulated with GA through COF membrane formation, resulting in a core-shell structure (UAPiGC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!