Ultrashort pulse laser, capable of varying pulse duration between 210 fs and 10 ps and producing a burst of pulses with an intra-burst pulse repetition rate of 64.5 MHz (time distance between pulses 15.5 ns), was used to investigate the ablation efficiency of the copper. The study on ablation efficiency was done for various numbers of pulses per burst between 1 and 40. The increase in the ablation efficiency by 20% for 3 pulses per burst compared to a non-burst regime was observed. The comparison was made between the beam-size optimised regimes. Therefore, the real advantage of the burst regime was demonstrated. To the best of our knowledge, we report the highest laser milling ablation efficiency of copper of 4.84 µm/µJ by ultrashort pulses at ~1 µm optical wavelength.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706424 | PMC |
http://dx.doi.org/10.1038/s41598-019-48779-w | DOI Listing |
Nat Commun
January 2025
Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany.
After a peripheral nerve injury, Schwann cells (SCs), the myelinating glia of the peripheral nervous system, convert into repair cells that foster axonal regrowth, and then remyelinate or re-ensheath regenerated axons, thereby ensuring functional recovery. The efficiency of this mechanism depends however on the time needed for axons to regrow. Here, we show that ablation of histone deacetylase 8 (HDAC8) in SCs accelerates the regrowth of sensory axons and sensory function recovery.
View Article and Find Full Text PDFArtif Intell Med
January 2025
Koç University, Department of Physics, Electrical and Electronics Engineering, Istanbul, Turkiye. Electronic address:
Deep neural networks have significantly advanced medical image classification across various modalities and tasks. However, manually designing these networks is often time-consuming and suboptimal. Neural Architecture Search (NAS) automates this process, potentially finding more efficient and effective models.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin City, 300350, China.
The hybrid CNN-transformer structures harness the global contextualization of transformers with the local feature acuity of CNNs, propelling medical image segmentation to the next level. However, the majority of research has focused on the design and composition of hybrid structures, neglecting the data structure, which enhance segmentation performance, optimize resource efficiency, and bolster model generalization and interpretability. In this work, we propose a data-oriented octree inverse hierarchical order aggregation hybrid transformer-CNN (nnU-OctTN), which focuses on delving deeply into the data itself to identify and harness potential.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.
Photodynamic therapy (PDT) is a powerful strategy for tumor therapy with noninvasiveness and desirable efficacy. However, the phototoxicity of photosensitizer after the post-PDT is the major obstacle limiting the clinic applications. Herein, a nitric oxide (NO)-activatable photosensitizer is reported with turn-on PDT behavior and endoplasmic reticulum (ER) targeting ability for precise tumor therapy.
View Article and Find Full Text PDFSci Rep
January 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Zhejiang, 315201, Ningbo, China.
In order to improve the power and energy of water-jet-guided laser, this paper introduces a double beam water-jet-guided laser (DWJL) technology. Based spatially polarized light combination and temporal phase modulation, two lasers are effectively coupled into a water jet with diameter of 100 μm. The maximum output peak power reaches 100 kW and the maximum pulse energy is 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!