Phenylketonuria (PKU) is caused by phenylalanine hydroxylase (PAH) deficiency, resulting in high blood and brain Phenylalanine (Phe) concentrations that can lead to impaired brain development and function. Standard treatment involves a Phe-restricted diet alone or in conjunction with sapropterin dihydrochloride in responsive patients. The Food and Drug Administration approved pegvaliase enzyme substitution therapy for adults with blood Phe >600 μmol/L in the US. Recently, the European Commission also approved pegvaliase for treatment of PKU patients aged 16 years or older with blood Phe >600 μmol/L. The analyses presented below were conducted to provide comparative evidence on long-term treatment effectiveness of pegvaliase versus standard of care in adults with PKU. Adult patients (≥18 years) with baseline blood Phe >600 μmol/L who had enrolled in the pegvaliase phase 2 and phase 3 clinical trials were propensity score-matched to historical cohorts of patients treated with "sapropterin + diet" or with "diet alone". These cohorts were derived from the PKU Demographics, Outcome and Safety (PKUDOS) registry and compared for clinical outcomes including blood Phe concentration and natural intact protein intake after 1 and 2 years. Propensity scores were estimated using logistic regression with probability of treatment as outcome (i.e. pegvaliase, "sapropterin + diet", or "diet alone") and patient demographic and disease severity covariates as predictors. An additional analysis in adult PKU patients with baseline blood Phe ≤600 μmol/L comparing non-matched patient groups "sapropterin + diet" to "diet alone" using PKUDOS registry data only was also conducted. The analyses in patients with baseline blood Phe >600 μmol comparing pegvaliase with "sapropterin + diet" (N = 64 matched pairs) showed lower mean blood Phe concentrations after 1 and 2 years with pegvaliase (505 and 427 μmol/L) versus "sapropterin + diet" (807 and 891 μmol/L); mean natural intact protein intake after 1 and 2 years was 49 and 57 g/day respectively with pegvaliase versus 23 and 28 g/day with "sapropterin + diet". The analysis comparing pegvaliase with "diet alone" (N = 120 matched pairs) showed lower mean blood Phe at 1 and 2 years with pegvaliase (473 and 302 μmol/L) versus "diet alone" (1022 and 965 μmol/L); mean natural intact protein intake after 1 and 2 years was 47 and 57 g/day with pegvaliase and 27 and 22 g/day with "diet alone". Considerably more patients achieved blood Phe ≤600, ≤360, and ≤120 μmol/L and reductions from baseline of ≥20%, ≥30%, and ≥50% in blood Phe after 1 and 2 years of pegvaliase versus standard treatments. The analysis in patients with baseline blood Phe ≤600 μmol/L showed lower blood Phe after 1 and 2 years with "sapropterin + diet" (240 and 324 μmol/L) versus "diet alone" (580 and 549 μmol/L) and greater percentages of patients achieving blood Phe targets ≤600, ≤360, and ≤120 μmol/L and reductions from baseline of ≥20%, ≥30%, and ≥50% in blood Phe. These results support pegvaliase as the more effective treatment option to lower Phe levels in adults with PKU who have difficulty keeping blood Phe ≤600 μmol/L with "diet alone". For patients with blood Phe ≤600 μmol/L, adding sapropterin to dietary management is an appropriate treatment option, for those responsive to the treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013411 | PMC |
http://dx.doi.org/10.1016/j.ymgme.2019.07.018 | DOI Listing |
Phys Eng Sci Med
January 2025
Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339, Iran.
Gastrin-releasing peptide receptors (GRPRs) overexpressed in many cancers are known as promising biomarkers to target tumors such as prostate, breast, and lung cancers. As the early diagnosis of the cancers can serve for better treatment of the patients, [In]In-DOTA-Pip-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 ([In]In-RM2) was prepared using an in-house developed Sn/In generator. 0.
View Article and Find Full Text PDFLab Chip
January 2025
Hacettepe University, Institute of Science, Nanotechnology and Nanomedicine Division, Ankara, Turkey.
Phenylketonuria (PKU) is characterized by an autosomal recessive mutation in the phenylalanine hydroxylase (PAH) gene. Impaired PAH enzyme activity leads to the accumulation of phenylalanine (Phe) and its metabolites in the bloodstream, which disrupts the central nervous system and causes psychomotor retardation. Early diagnosis of PKU is essential for timely intervention.
View Article and Find Full Text PDFBMC Gastroenterol
December 2024
Guangxi Medical University, Nanning, 530021, Guangxi, China.
Background: Gastric cancer (GC) remains one of the predominant malignant tumors within the digestive tract, yet its underlying biological mechanisms remain elusive. The primary objective of this study is to delineate the causal relationship between circulating metabolites and GC.
Method: The primary Mendelian randomization (MR) analysis was based on three large GWAS datasets.
Transl Stroke Res
December 2024
Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.
Perihematomal edema (PHE) significantly aggravates secondary brain injury in patients with intracerebral hemorrhage (ICH), yet its detailed mechanisms remain elusive. Neutrophil extracellular traps (NETs) are known to exacerbate neurological deficits and worsen outcomes after stroke. This study explores the potential role of NETs in the pathogenesis of brain edema following ICH.
View Article and Find Full Text PDFArch Toxicol
December 2024
Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
2-Phenoxyethanol (PhE) is an amphiphilic organic compound frequently used as a broad-spectrum preservative in cosmetic products and other consumer goods. PhE is also used as a biocidal component in occupational settings. A previous volunteer study by our working group following oral exposure to PhE showed that PhE is almost completely taken up into the human body followed by an extensive metabolization and fast urinary elimination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!