Air pollution is the most important environmental risk factor for disease and premature death, and exposure to combustion particles from vehicles is a major contributor. Human epidemiological studies combined with experimental studies strongly suggest that exposure to combustion particles may enhance the risk of cardiovascular disease (CVD), including atherosclerosis, hypertension, thrombosis and myocardial infarction.In this review we hypothesize that adhered organic chemicals like polycyclic aromatic hydrocarbons (PAHs), contribute to development or exacerbation of CVD from combustion particles exposure. We summarize present knowledge from existing human epidemiological and clinical studies as well as experimental studies in animals and relevant in vitro studies. The available evidence suggests that organic compounds attached to these particles are significant triggers of CVD. Furthermore, their effects seem to be mediated at least in part by the aryl hydrocarbon receptor (AhR). The mechanisms include AhR-induced changes in gene expression as well as formation of reactive oxygen species (ROS) and/or reactive electrophilic metabolites. This is in accordance with a role of PAHs, as they seem to be the major chemical group on combustion particles, which bind AhR and/or is metabolically activated by CYP-enzymes. In some experimental models however, it seems as PAHs may induce an inflammatory atherosclerotic plaque phenotype irrespective of DNA- and/or AhR-ligand binding properties. Thus, various components and several signalling mechanisms/pathways are likely involved in CVD induced by combustion particles.We still need to expand our knowledge about the role of PAHs in CVD and in particular the relative importance of the different PAH species. This warrants further studies as enhanced knowledge on this issue may amend risk assessment of CVD caused by combustion particles and selection of efficient measures to reduce the health effects of particular matters (PM).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704565 | PMC |
http://dx.doi.org/10.1186/s12940-019-0514-2 | DOI Listing |
This study investigates the effects of varying exhaust gas recirculation (EGR) rates and temperatures on the combustion and emissions characteristics of a compression ignition engine fueled with hydrotreated vegetable oil (HVO). Understanding these effects is essential for optimizing renewable fuel applications in compression ignition engines, contributing to cleaner combustion, and supporting sustainable transportation initiatives. The experiments revealed that increasing the EGR rate to 20% not only reduces NOx emissions by approximately 25% but also increases smoke by around 15%, highlighting a trade-off between NOx and particulate matter control.
View Article and Find Full Text PDFSmall
January 2025
Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621999, China.
The combustion efficiency and reactivity of aluminum (Al) particles, as a crucial component in solid propellants, are constrained by the inert oxide layer aluminum oxide (AlO). Polytetrafluoroethylene (PTFE) can remove the oxide layer, however, carbon deposition generated during the reaction process still limits the reaction efficiency of Al/PTFE fuel. Here, a litchi-like Al/PTFE fuel with the nano-PTFE islands distributed on the Al particles surface is successfully designed, based on localized activation and synergistic reaction strategies, to solve the AlO layer and carbon deposition.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi 830052, China.
According to the physical characteristics of cotton and the work characteristics of cotton pickers in the field, during the picking process, there is a risk of cotton combustion. The cotton picker working environment is complex, cotton ignition can be hidden, and fire is difficult to detect. Therefore, in this study, we designed an improved algorithm for multi-sensor data fusion; built a cotton picker fire detection system by using infrared temperature sensors, CO sensors, and the upper computer; and proposed a BP neural network model based on improved mutation operator hybrid gray wolf optimizer and particle swarm optimization (MGWO-PSO) algorithm based on the BP neural network model.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland.
The removal of soot particles via high-performance catalysts is a critical area of research due to the growing concern regarding air pollution. Among various potential catalysts suitable for soot oxidation, cerium oxide-based materials have shown considerable promise. In this study, CeO samples obtained using a range of preparation methods (including hydrothermal synthesis (HT), sonochemical synthesis (SC), and hard template synthesis (TS)) were tested in soot combustion.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
IME Process Metallurgy and Metal Recycling, RWTH Aachen University, Intzestrasse 3, 520056 Aachen, Germany.
The glycine nitrate procedure (GNP) is a method that proved to be the easiest and most effective method for controlling the composition and morphology during the synthesis of CoRMoO (R = Ho, Yb, Gd). This method of the combustion process achieves control of stoichiometry, homogeneity, and purity. Metal nitrates and glycine were mixed in the appropriate stoichiometric ratios to produce CoRMoO (R = Ho, Yb, Gd).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!