Small molecule immunomodulation: the tumor microenvironment and overcoming immune escape.

J Immunother Cancer

Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Published: August 2019

Immunotherapy has led to a paradigm shift in the treatment of many advanced malignancies. Despite the success in treatment of tumors like non-small cell lung cancer (NSCLC) and melanoma, checkpoint inhibition-based immunotherapy has limitations. Many tumors, such as pancreatic cancer, are less responsive to checkpoint inhibitors, where patients tend to have a limited duration of benefit and where clinical responses are more robust in patients who are positive for predictive biomarkers. One of the critical factors that influence the efficacy of immunotherapy is the tumor microenvironment (TME), which contains a heterogeneous composition of immunosuppressive cells. Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) alter the immune landscape of the TME and serve as facilitators of tumor proliferation, metastatic growth and immunotherapy resistance. Small molecule inhibitors that target these components of the TME have been developed. This special issue review focuses on two promising classes of immunomodulatory small molecule inhibitors: colony stimulating factor-1 receptor (CSF-1R) and focal adhesion kinase (FAK). Small molecule inhibitors of CSF-1R reprogram the TME and TAMs, and lead to enhanced T-cell-mediated tumor eradication. FAK small molecule inhibitors decrease the infiltration MDSCs, TAMs and regulatory T-cells. Additionally, FAK inhibitors are implicated as modulators of stromal density and cancer stem cells, leading to a TME more conducive to an anti-tumor immune response. Immunomodulatory small molecule inhibitors present a unique opportunity to attenuate immune escape of tumors and potentiate the effectiveness of immunotherapy and traditional cytotoxic therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704558PMC
http://dx.doi.org/10.1186/s40425-019-0667-0DOI Listing

Publication Analysis

Top Keywords

small molecule
24
molecule inhibitors
20
tumor microenvironment
8
immune escape
8
immunomodulatory small
8
fak small
8
inhibitors
7
small
6
immunotherapy
5
tme
5

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.

View Article and Find Full Text PDF

Roaming reactions involving a neutral fragment of a molecule that transiently wanders around another fragment before forming a new bond are intriguing and peculiar pathways for molecular rearrangement. Such reactions can occur for example upon double ionization of small organic molecules, and have recently sparked much scientific interest. We have studied the dynamics of the [Formula: see text]-roaming reaction leading to the formation of [Formula: see text] after two-photon double ionization of ethanol and 2-aminoethanol, using an XUV-UV pump-probe scheme.

View Article and Find Full Text PDF

Burn-related neuropathic pain (BRNP) can arise following burn-induced nerve damage, affects approximately 6% of burned human patients and can result in chronic pain. Although widely studied in humans, data on BRNP or its treatment in animals is lacking. A 4-year-old domestic shorthair cat was presented with an infected, non-healing wound suspected to be a caustic burn.

View Article and Find Full Text PDF

Expression, characterization and anti-colon cancer activity of recombinant ginseng peptides with amino acid tandem repeats.

Protein Expr Purif

January 2025

Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China. Electronic address:

Ginseng peptides, small molecule active ingredients in ginseng, are mainly extracted naturally or synthesised chemically, but high costs and difficulties hinder further research. In this study, a ginseng hexapeptide FKEHGY, named antitumor peptide 0601 (AT0601) and its five tandem sequence repeats AT0605, were expressed in Bacillus subtilis WB600 for the first time, and the bioactivity study showed that the anticancer activity of AT0605 was even significantly higher than that of AT0601 for colon cancer CT26 cells, with IC50s of 16.82±1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!