Förster and modified Redfield theories play one of the central roles in the description of excitation energy transfer in molecular systems. However, in the present state, these theories describe only the dynamics of populations of local electronic excitations or delocalized exciton eigenstates, respectively, i.e., the diagonal elements of the density matrix in the corresponding representation. They do not give prescription for propagating the off-diagonal elements of the density matrix (coherences). This is commonly accepted as a limitation of these theories. Here, we derive formulas for the dynamics of the coherences in the framework of Förster and modified Redfield theories and, thus, remove this limitation. For the dimer case, these formulas provide excellent correspondence with numerically exact calculations according to the hierarchical equations of motion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5100967 | DOI Listing |
J Neurosurg Pediatr
January 2025
Departments of1Neurosurgery and.
Objective: Intraventricular baclofen (IVB) administration is used for the treatment of secondary dystonia associated with cerebral palsy (CP), but it has not been reported as a first-line infusion technique for spasticity. In this study, the authors report outcomes of patients with mixed or isolated spasticity treated with IVB administration.
Methods: A retrospective analysis was performed of consecutive patients treated with IVB between 2019 and 2023.
Phys Rev Lett
December 2024
Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA.
High-energy extensions to general relativity modify the Einstein-Hilbert action with higher-order curvature corrections and theory-specific coupling constants. The order of these corrections imprints a universal curvature dependence on observations while the coupling constant controls the deviation strength. In this Letter, we leverage the theory-independent expectation that modifications to the action of a given order in spacetime curvature (Riemann tensor and contractions) lead to observational deviations that scale with the system length scale to a corresponding power.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy.
We revisit supernova (SN) bounds on a hidden sector consisting of millicharged particles χ and a massless dark photon. Unless the self-coupling is fine-tuned to be small, rather than exiting the SN core as a gas, the particles form a relativistic fluid and subsequent dark QED fireball, streaming out against the drag due to the interaction with matter. Novel bounds due to excessive energy deposition in the mantle of low-energy supernovae can be obtained.
View Article and Find Full Text PDFObjective: The objective of this study was to assess the complicated relationship between frailty, perioperative complications, and patient-reported outcomes (PROs) in elderly patients (≥ 75 years old) undergoing lumbar spine fusion (LSF).
Methods: Consecutive patients who underwent LSF between March 2019 and December 2021 were recruited in this study. Frail patients (modified frailty index [mFI] score ≥ 2) were propensity score matched to nonfrail patients (mFI score 0-1) on the basis of age, sex, and the number of fused levels.
J Neurosurg
January 2025
1Department of Neurological Surgery and.
Objective: Traumatic hemorrhagic cerebral contusions are a well-established cause of morbidity and mortality in neurosurgery. This study aimed to determine prognostic factors for long-term functional outcomes and longitudinal contusion volume changes in traumatic brain injury (TBI) patients.
Methods: Data from 285 patients with traumatic cerebral contusions were retrospectively reviewed to identify variables predictive of initial contusion volume, contusion expansion on short-term follow-up imaging, and functional outcomes according to the modified Rankin Scale (mRS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!