Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report two schemes to generate perfect anisotropy in the photoelectron angular distribution of a randomly oriented ensemble of polyatomic molecules. In order to exert full control over the anisotropy of photoelectron emission, we exploit interferences between single-photon pathways and a manifold of resonantly enhanced two-photon pathways. These are shown to outperform nonsequential (ω, 2ω) bichromatic phase control for the example of CHFClBr molecules. We are able to optimize pulses that yield anisotropic photoelectron emission thanks to a very efficient calculation of photoelectron momentum distributions. This is accomplished by combining elements of quantum chemistry, variational scattering theory, and time-dependent perturbation theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5111362 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!