Human milk fat plays an essential role as the source of energy and cell function regulator; therefore, the preservation of unique human milk donors' lipid composition is of fundamental importance. To compare the effects of high pressure processing (HPP) and holder pasteurization on lipidome, human milk was processed at 62.5 °C for 30 min and at five variants of HPP from 450 MPa to 600 MPa, respectively. Lipase activity was estimated with QuantiChrom™ assay. Fatty acid composition was determined with the gas chromatographic technique, and free fatty acids content by titration with 0.1 M KOH. The positional distribution of fatty acid in triacylglycerols was performed. The oxidative induction time was obtained from the pressure differential scanning calorimetry. Carotenoids in human milk were measured by liquid chromatography. Bile salt stimulated lipase was completely eliminated by holder pasteurization, decreased at 600 MPa, and remained intact at 200 + 400 MPa; 450 MPa. The fatty acid composition and structure of human milk fat triacylglycerols were unchanged. The lipids of human milk after holder pasteurization had the lowest content of free fatty acids and the shortest induction time compared with samples after HPP. HPP slightly changed the β-carotene and lycopene levels, whereas the lutein level was decreased by 40.0% up to 60.2%, compared with 15.8% after the holder pasteurization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770840PMC
http://dx.doi.org/10.3390/nu11091972DOI Listing

Publication Analysis

Top Keywords

human milk
28
holder pasteurization
16
fatty acid
12
high pressure
8
milk fat
8
450 mpa
8
600 mpa
8
acid composition
8
free fatty
8
fatty acids
8

Similar Publications

Background: The 2019 Canada's Food Guide provides universal recommendations to individuals aged ≥2 years. However, the extent to which these recommendations are appropriate for older adults is unknown. Although ideal, conducting a large randomized controlled trial is unrealistic in the short term.

View Article and Find Full Text PDF

The prevalence of hypertension in Japan remains high, owing to the high salt content of the typical Japanese diet. Dairy-based foods may reduce blood pressure and hypertension risk. However, dairy consumption is low in Japan, and the relationships between dairy intake and blood pressure or the mechanisms by which dairy products affect blood pressure are not fully understood.

View Article and Find Full Text PDF

Review on bioproduction of sialylated human milk oligosaccharides: Synthesis methods, physiologic functions, and applications.

Carbohydr Polym

March 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Human milk oligosaccharides (HMOs) are crucial for promoting neonatal health, with sialylated oligosaccharides, a significant subclass, offering a variety of health benefits such as prebiotic effects, anti-inflammatory and antimicrobial properties, antiviral defense, and cognitive development support. Among these, 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) have received "GRAS" status from the U.S.

View Article and Find Full Text PDF

Human milk oligosaccharides (HMOs) are now the principal component of the latest infant formula generation. However, it is challenging to separate and quantify highly heterogeneous isomers when analyzing HMOs. Here, we developed a high-throughput isomer-resolved quantification method for 21 native HMOs based on ultrahigh-performance liquid chromatography-mass spectrometry-multiple reaction monitoring (UPLC-MS-MRM) technology.

View Article and Find Full Text PDF

Harnessing the power of human breast milk to boost intestinal permeability for nanoparticles and macromolecules.

J Control Release

January 2025

Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Cardiovascular Sciences Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Neurosurgery Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Resnick Sustainability Center of Catalysis, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Bruce and Ruth Rappaport Cancer Research Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel. Electronic address:

The intricate interplay between human breast milk, nanoparticles, and macromolecules holds promise for innovative nutritional delivery strategies. Compared to bovine milk and infant formula, this study explores human breast milk's role in modulating intestinal permeability and its impact on nanoparticle and macromolecule transport. Comparative analysis with bovine milk and infant formula reveals significant elevations in permeability with human breast milk, accompanied by a decrease in transepithelial electrical resistance, suggesting enhanced paracellular transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!