A study of the influence of polyols, with or without an additional reducing agent, on crystallites' size and magnetic features in FeO nanoparticles and on their performance in magnetic particle hyperthermia is presented. Three different samples were synthesized by thermal decomposition of an iron precursor in the presence of NaBH in a polyol. So far, triethylene glycol (TrEG) and polyethylene glycol (PEG 1000 and PEG 8000) that exhibit different physical and chemical properties have been used in order to investigate the influence of the polyols on the composition and the size of the NPs. Additionally, the presence of a different reducing agent such as hydrazine, has been tested for comparison reasons in case of TrEG. Three more samples were prepared solvothermally by using the same polyols, which led to different crystallite sizes. The magnetic core of the nanoparticles was characterized, while the presence of the surfactant was studied qualitatively and quantitatively. Concerning the magnetic features, all samples present magnetic hysteresis including remanence and coercivity revealing that they are thermally blocked at room temperature. Finally, a study on the influence of the MNPs heating efficiency from their size and the field amplitude was accomplished. In our polyol process the main idea was to control the specific loss power (SLP) values by the nanoparticles' size and consequently by the polyol itself.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747565PMC
http://dx.doi.org/10.3390/ma12172663DOI Listing

Publication Analysis

Top Keywords

magnetic particle
8
particle hyperthermia
8
study influence
8
influence polyols
8
reducing agent
8
magnetic features
8
three samples
8
magnetic
7
polyol
4
polyol composition
4

Similar Publications

Quantum Analog of Landau-Lifshitz-Gilbert Dynamics.

Phys Rev Lett

December 2024

Uppsala University, Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala, Sweden.

The Landau-Lifshitz-Gilbert (LLG) and Landau-Lifshitz (LL) equations play an essential role for describing the dynamics of magnetization in solids. While a quantum analog of the LL dynamics has been proposed in [Phys. Rev.

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Measuring XNA polymerase fidelity in a hydrogel particle format.

Nucleic Acids Res

January 2025

Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States.

Growth in the development of engineered polymerases for synthetic biology has led to renewed interest in assays that can measure the fidelity of polymerases that are capable of synthesizing artificial genetic polymers (XNAs). Conventional approaches require purifying the XNA intermediate of a replication cycle (DNA → XNA → DNA) by denaturing polyacrylamide gel electrophoresis, which is a slow, costly, and inefficient process that requires a large-scale transcription reaction and careful extraction of the XNA strand from the gel slice. In an effort to streamline the assay, we developed a purification-free approach in which the XNA transcription and reverse transcription steps occur inside the matrix of a hydrogel-coated magnetic particle.

View Article and Find Full Text PDF

A Molecular Perspective of Exciton Condensation from Particle-Hole Reduced Density Matrices.

J Phys Chem Lett

January 2025

Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.

Exciton condensation, the Bose-Einstein-like condensation of quasibosonic particle-hole pairs, has been the subject of much theoretical and experimental interest and holds promise for ultraenergy-efficient technologies. Recent advances in bilayer systems, such as transition metal dichalcogenide heterostructures, have brought us closer to the experimental realization of exciton condensation without the need for high magnetic fields. In this perspective, we explore progress toward understanding and realizing exciton condensation, with a particular focus on the characteristic theoretical signature of exciton condensation: an eigenvalue greater than one in the particle-hole reduced density matrix, which signifies off-diagonal long-range order.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!