QuasAr1 is a fluorescent voltage sensor derived from Archaerhodopsin 3 (Arch) of by directed evolution. Here we report absorption and emission spectroscopic studies of QuasAr1 in Tris buffer at pH 8. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation spectra were determined. The thermal stability of QuasAr1 was studied by long-time attenuation coefficient measurements at room temperature (23 ± 2 °C) and at 2.5 ± 0.5 °C. The apparent melting temperature was determined by stepwise sample heating up and cooling down (obtained apparent melting temperature: 65 ± 3 °C). In the protein melting process the originally present protonated retinal Schiff base (PRSB) with absorption maximum at 580 nm converted to de-protonated retinal Schiff base (RSB) with absorption maximum at 380 nm. Long-time storage of QuasAr1 at temperatures around 2.5 °C and around 23 °C caused gradual protonated retinal Schiff base isomer changes to other isomer conformations, de-protonation to retinal Schiff base isomers, and apoprotein structure changes showing up in ultraviolet absorption increase. Reaction coordinate schemes are presented for the thermal protonated retinal Schiff base isomerizations and deprotonations in parallel with the dynamic apoprotein restructurings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747118PMC
http://dx.doi.org/10.3390/ijms20174086DOI Listing

Publication Analysis

Top Keywords

retinal schiff
20
schiff base
20
protonated retinal
12
absorption emission
8
emission spectroscopic
8
fluorescent voltage
8
voltage sensor
8
fluorescence quantum
8
temperature °c
8
°c °c
8

Similar Publications

Development of self-healing hydrogels to support choroidal endothelial cell transplantation for the treatment of early age related macular degeneration.

Acta Biomater

December 2024

Institute for Vision Research, Carver College of Medicine; University of Iowa, Iowa City, IA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA. Electronic address:

In retinal diseases such as age-related macular degeneration (AMD) and choroideremia, a key pathophysiologic step is loss of endothelial cells of the choriocapillaris. Repopulation of choroidal vasculature early in the disease process may halt disease progression. Prior studies have shown that injection of donor cells in suspension results in significant cellular efflux and poor cell survival.

View Article and Find Full Text PDF

Structural Evolution of Retinal Chromophore in Early Intermediates of Inward and Outward Proton-Pumping Rhodopsins.

J Phys Chem B

December 2024

Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.

Proton-pumping rhodopsins, which consist of seven transmembrane helices and have a retinal chromophore bound to a lysine side chain through a Schiff base linkage, offer valuable insights for developing unidirectional ion transporters. Despite identical overall structures and membrane topologies of outward and inward proton-pumping rhodopsins, these proteins transport protons in opposing directions, suggesting a rational mechanism that enables protons to move in different directions within similar protein structures. In the present study, we clarified the chromophore structures in early intermediates of inward and outward proton-pumping rhodopsins.

View Article and Find Full Text PDF

The primary photoisomerization reactions of the all- to 13- and 11- to all- retinal protonated Schiff base (RPSB) in microbial and animal rhodopsins, respectively, occur on a subpicosecond time scale with high quantum yields. At the same time, the isolated RPSB exhibits slower excited-state decay, in particular, in its all- form, and hence the interaction with the protein environment is capable of changing the time scale as well as the specificity of the reaction. Here, by using the high-level QM/MM calculations, we provide a comparative study of the primary photoresponse of and RPSB isomers in both the initial forms and first photoproducts of microbial rhodopsin 2 (KR2) and bacteriorhodopsin (BR), and animal visual rhodopsin (Rho).

View Article and Find Full Text PDF

Study of Photoselectivity in Linear Conjugated Chromophores Using the XMS-CASPT2 Method.

ACS Phys Chem Au

November 2024

Condensed Matter Theory Group, Laboratory for Theoretical and Computational Physics, Center for Scientific Computing, Theory, and Data, Paul Scherrer Institute, 5232 Villigen, Switzerland.

Photoisomerization, the structural alteration of molecules upon absorption of light, is crucial for the function of biological chromophores such as retinal in opsins, proteins vital for vision and other light-sensitive processes. The intrinsic selectivity of this isomerization process (i.e.

View Article and Find Full Text PDF

Background: Variants in CRX are associated with dominantly inherited retinopathy with considerable phenotypic variability. Many patients have central retinal degeneration; in some patients, we have observed an additional focus of degeneration in the nasal retina. This study explores this phenotypic association amongst patients with CRX-associated disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!