Clinical information in electronic health records (EHRs) is mostly unstructured. With the ever-increasing amount of information in patients' EHRs, manual extraction of clinical information for data reuse can be tedious and time-consuming without dedicated tools. In this paper, we present SmartCRF, a prototype to visualize, search and ease the extraction and structuration of information from EHRs stored in an i2b2 data warehouse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI190476 | DOI Listing |
Stud Health Technol Inform
August 2019
Bordeaux Hospital University Center, Pôle de santé publique, Service d'information médicale, Unité Informatique et Archivistique Médicales, F-33000 Bordeaux, France.
Clinical information in electronic health records (EHRs) is mostly unstructured. With the ever-increasing amount of information in patients' EHRs, manual extraction of clinical information for data reuse can be tedious and time-consuming without dedicated tools. In this paper, we present SmartCRF, a prototype to visualize, search and ease the extraction and structuration of information from EHRs stored in an i2b2 data warehouse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!