Natural language processing (NLP) technologies have been successfully applied to cancer research by enabling automated phenotypic information extraction from narratives in electronic health records (EHRs) such as pathology reports; however, developing customized NLP solutions requires substantial effort. To facilitate the adoption of NLP in cancer research, we have developed a set of customizable modules for extracting comprehensive types of cancer-related information in pathology reports (e.g., tumor size, tumor stage, and biomarkers), by leveraging the existing CLAMP system, which provides user-friendly interfaces for building customized NLP solutions for individual needs. Evaluation using annotated data at Vanderbilt University Medical Center showed that CLAMP-Cancer could extract diverse types of cancer information with good F-measures (0.80-0.98). We then applied CLAMP-Cancer to an information extraction task at Mayo Clinic and showed that we can quickly build a customized NLP system with comparable performance with an existing system at Mayo Clinic. CLAMP-Cancer is freely available for academic use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359882 | PMC |
http://dx.doi.org/10.3233/SHTI190383 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!