Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The review of pathology test results for missed diagnoses in Emergency Departments is time-consuming, laborious, and can be inaccurate. An automated solution, with text mining and clinical terminology semantic capabilities, was developed to provide clinical decision support. The system focused on the review of microbiology test results that contained information on culture strains and their antibiotic sensitivities, both of which can have a significant impact on ongoing patient safety and clinical care. The system was highly effective at identifying abnormal test results, reducing the number of test results for review by 92%. Furthermore, the system reconciled antibiotic sensitivities with documented antibiotic prescriptions in discharge summaries to identify patient follow-ups with a 91% F-measure - allowing for the accurate prioritization of cases for review. The system dramatically increases accuracy, efficiency, and supports patient safety by ensuring important diagnoses are recognized and correct antibiotics are prescribed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI190319 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!