Photothermal therapy (PTT) is a promising method to kill bacteria because of the broad-spectrum of antibacterial activity and the ability of spatiotemporal regulation. In the previously reported systems, light induced high temperature (˜70 °C) was essential for effectively killing of bacteria, which, however, would also damage nearby nontarget cells or tissues. Here we report photothermal nanoparticles (NPs) for more targeting and killing bacteria at a relative low temperature. Polydopamine (PDA) was chosen to prepare NPs because of its excellent capability of photothermal conversion. Magainin I (MagI) which is an antimicrobial peptide was used to modify NPs' surface because it can specifically interact with bacteria. We demonstrate that MagI-PEG@PDA NPs effectively killed E. coli at a low temperature of ˜45 °C upon near-infrared (NIR) light irradiation. In contrast, the native PDA NPs under light irradiation or the MagI-PEG@PDA NPs themselves showed no bacteria killing ability. This work highlights the importance of close interaction between the target bacteria and the photothermal materials and may promote the practical clinical applications of the PTT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2019.110423 | DOI Listing |
Org Biomol Chem
January 2025
Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, USA.
Bacterial biofilms are surface-attached communities consisting of non-replicating persister cells encased within an extracellular matrix of biomolecules. Unlike bacteria that have acquired resistance to antibiotics, persister cells enable biofilms to demonstrate innate tolerance toward all classes of conventional antibiotic therapies. It is estimated that 50-80% of bacterial infections are biofilm associated, which is considered the underlying cause of chronic and recurring infections.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
Bacterial keratitis (BK) is a type of corneal inflammation resulting from bacterial infection in the eye. Although nanozymes have been explored as promising materials in corneal wound healing, currently available nanozymes lack sufficient catalytic activity and the ability to penetrate bacterial biofilms, limiting their efficacy against the treatment of BK. To remedy this, ZnFe layered double hydroxide (ZnFe-LDH) nanosheets are loaded with Cu single-atom nanozymes (Cu-SAzymes) and aminated dextran (Dex-NH), resulting in the formation of the nanozyme DT-ZnFe-LDH@Cu, which possesses peroxidase (POD)-, oxidase (OXD)-, and catalase (CAT)-like catalytic activities.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Periodontology, School and Hospital of Stomotology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China.
The combination of hydrophilic arginine residues and hydrophobic tryptophan residues is considered to be the first choice for designing short-chain antimicrobial peptides (AMPs) due to their potent antibacterial activity. Based on this, we designed an arginine- and tryptophan-rich short peptide, VR-12. Peri-implantitis is a significant microbial inflammatory disorder characterized by the inflammation of the soft tissues surrounding an implant, which ultimately leads to the progressive resorption of the alveolar bone.
View Article and Find Full Text PDFFront Immunol
January 2025
Nanobioscience Group, Agharkar Research Institute, Pune, India.
The Chikungunya virus (CHIKV) is a mosquito-borne virus with a long history of recurring epidemics transmitted through mosquitoes. The rapid spread of CHIKV has intensified the need for potent vaccines. Escherichia coli (), a vital part of human gut microbiota, is utilized in recombinant DNA technology for cloning.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
Flap techniques are indispensable in modern surgery because of their role in repairing tissue defects and restoring function. Ischemia-reperfusion and oxidative stress-induced injuries are the main causes of flap failure. Oxidative stress exacerbates cell damage through the accumulation of reactive oxygen species (ROS), thereby affecting flap function and survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!