In filamentous fungi, the conserved transcription factors play important roles in multiple cellular and developmental processes. The GATA proteins, a family of GATA-binding zinc finger transcription factors, play diverse functions in fungi. is an economically important pathogen-causing rice false smut worldwide. To gain additional insight into the cellular and molecular mechanisms of this pathogen, in this study, we identified and functionally characterized seven GATA proteins from the genome (UvGATA). Sequences analysis indicated that these GATA proteins are divided into seven clades. The proteins in each clade contained conserved clade-specific sequences and structures, thus leading to the same motif serving different purposes in various contexts. The expression profiles of genes at different infection stages and under HO stress were detected. Results showed that the majority of genes performed functions at both processes, thereby confirming the roles of these genes in pathogenicity and reactive oxygen species stress tolerance. This study provided an important starting point to further explore the biological functions of genes and increased our understanding of their potential transcriptional regulatory mechanisms in .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/gen-2018-0190 | DOI Listing |
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi
December 2024
Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, China. *Corresponding author, E-mail:
Objective To investigate the protective effect of curcumin (Cur) against arsenic-induced neuroimmune toxicity and the underlying molecular mechanisms in vivo. Methods Eighty SPF female C57BL/6 mice were randomly assigned to four groups: a control group, an arsenic-treated group, a Cur-treated group and an arsenic+Cur group, with 20 mice in each group. The control group received distilled water; the arsenic-treated group was given 50 mg/L NaAsO in the drinking water; the Cur-treated group was gavaged with 200 mg/kg of curcumin for 45 days; and the arsenic+Cur group received distilled water and was gavaged with 200 mg/kg of curcumin.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.
The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
December 2024
Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar. Electronic address:
Cell proliferation and differentiation are two fundamental biological processes that occur in biological systems, tightly regulated by various factors such as transcription factors (TFs). Zinc finger proteins are TFs responsible for maintaining the biological balance via coordinating development and functionality within the living cells. GATA binding protein 3 (GATA3), one of the zinc finger proteins, plays an essential role in driving differentiation and proliferation-related processes, thereby contributing to the regulation of the dynamism and productivity of living cells.
View Article and Find Full Text PDFMol Biotechnol
December 2024
Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.
The development of genome technology has opened new possibilities for comparative primate genomics. Non-human primates share approximately 98% genome similarity and provides vital information into the genetic similarities and variances among species utilized as disease models. DNA study links unique genetic variations to common facial attributes such as nose and eyes.
View Article and Find Full Text PDFDev Growth Differ
December 2024
Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
Transcription factors collaborate with epigenetic regulatory factors to orchestrate cardiac differentiation for heart development, but the underlying mechanism is not fully understood. Here, we report that GATA-6 induces cardiac differentiation but peroxisome proliferator-activated receptor α (PPARα) reverses GATA-6-induced cardiac differentiation, possibly because GATA-6/PPARα recruits the polycomb protein complex containing EZH2/Ring1b/BMI1 to the promoter of the cardiac-specific α-myosin heavy chain (α-MHC) gene and suppresses α-MHC expression, which ultimately inhibits cardiac differentiation. Furthermore, Ring1b ubiquitylates PPARα and GATA-6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!