Respiratory drive, the intensity of the respiratory center's output, determines the effort exerted in each breath. The increasing awareness of the adverse effects of both strong and weak respiratory efforts during mechanical ventilation on patient outcome brings attention to the respiratory drive of the critically ill patient. Critical illness can affect patients' respiratory drive through multiple pathways, mainly operating through three feedback systems: cortical, metabolic, and chemical. The chemical feedback system, defined as the response of the respiratory center's output to changes in arterial blood gases and pH, is one of the most important determinants of respiratory drive. The purpose of this state-of-the-art review is to describe the determinants of respiratory drive in critically ill patients, review the tools available to assess respiratory drive at the bedside, and discuss the implications of altered respiratory drive during mechanical ventilation. An analysis that relates arterial carbon dioxide levels with brain's response to this stimulus will be presented, contrasting the brain's responses to the patient's ability to generate effective alveolar ventilation, both during unassisted breathing and with different modes of ventilatory assist. This analysis may facilitate comprehension of the pathophysiology of respiratory drive in critically ill patients. As we aim to avoid both over- and under-assistance with mechanical ventilation, considering the patients' respiratory drive at the bedside may improve clinical assessment and management of the patient and the ventilator.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1164/rccm.201903-0596SO | DOI Listing |
PLoS Pathog
January 2025
Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
The NLRP3 inflammasome is a fundamental component of the innate immune system, yet its excessive activation is intricately associated with viral pathogenesis. Porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), belonging to the family Arteriviridae, triggers dysregulated cytokine release and interstitial pneumonia, which can quickly escalate to acute respiratory distress and death. However, a mechanistic understanding of PRRSV-2 progression remains unclear.
View Article and Find Full Text PDFAcad Radiol
January 2025
Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110 (S.I., M.A.T., M.I., C.S., R.L., A.H., R.L.W., T.J.F.). Electronic address:
Rationale And Objective: Conventional positron emission tomography (PET) respiratory gating utilizes a fraction of acquired PET counts (i.e., optimal gate [OG]), whereas elastic motion correction with deblurring (EMCD) utilizes all PET counts to reconstruct motion-corrected images without increasing image noise.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.
An understanding of intracellular mechanisms by which fentanyl and other synthetic opioids exert adverse effects on breathing is needed. Using freely moving adult male guinea pigs, we administered the nitric oxide synthase (NOS) inhibitor, L-NAME (N-nitro-L-arginine methyl ester), to determine whether nitrosyl factors, such as nitric oxide and S-nitrosothiols, play a role in fentanyl-induced respiratory depression. Ventilatory parameters were recorded by whole body plethysmography to determine the effects of fentanyl (75 μg/kg, IV) in guinea pigs that had received a prior injection of vehicle (saline), L-NAME or the inactive D-isomer, D-NAME (both at 50 μmol/kg, IV), 15 min beforehand.
View Article and Find Full Text PDFPflugers Arch
January 2025
Division of Neurophysiology, Department of Physiology, Hyogo Medical University, Hyogo, 663 8501, Japan.
The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Thoracic Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy.
Rigid bronchoscopy (RB) is the gold standard for managing central airway obstruction (CAO), a life-threatening condition caused by both malignant and benign etiologies. Anesthetic management is challenging as it requires balancing deep sedation with maintaining spontaneous breathing to avoid airway collapse. There is no consensus on the optimal anesthetic approach, with options including general anesthesia with neuromuscular blockers or spontaneous assisted ventilation (SAV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!