Single-point incremental forming (SPIF) is a technology that allows incremental manufacturing of complex parts from a flat sheet using simple tools; further, this technology is flexible and economical. Measuring the forming force using this technology helps in preventing failures, determining the optimal processes, and implementing on-line control. In this paper, an experimental study using SPIF is described. This study focuses on the influence of four different process parameters, namely, step size, tool diameter, sheet thickness, and feed rate, on the maximum forming force. For an efficient force predictive model based on an adaptive neuro-fuzzy inference system (ANFIS), an artificial neural network (ANN) and a regressions model were applied. The predicted forces exhibited relatively good agreement with the experimental results. The results indicate that the performance of the ANFIS model realizes the full potential of the ANN model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705755PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221341PLOS

Publication Analysis

Top Keywords

single-point incremental
8
forming force
8
prediction formation
4
force
4
formation force
4
force single-point
4
incremental sheet
4
sheet metal
4
forming
4
metal forming
4

Similar Publications

Article Synopsis
  • Optimizing enzyme thermostability is crucial for protein science and industry, but combining multiple mutations can lead to inactivation, making traditional methods slow and inefficient.
  • Researchers developed an AI-driven method to enhance enzyme thermostability by efficiently recombining beneficial single-point mutations, using data from various mutant groups.
  • After two design rounds, the study achieved 50 combinatorial mutants with 100% success, including one exceptional mutant that significantly increased melting temperature and half-life, while also revealing complex interactions (epistasis) among mutations.
View Article and Find Full Text PDF

This paper explores the development and application of the incremental forming process, an innovative method for manufacturing complex parts with high flexibility and low tooling costs. The review categorizes three key process variants: Single Point Incremental Forming (SPIF), Two Point Incremental Forming (TPIF), and Incremental Forming with Conjugated Active Plate (IFCAP). This study demonstrates the significant effects of these process variants on part accuracy and material behavior, particularly under varying process conditions.

View Article and Find Full Text PDF

Background: Magnesium (Mg) and its alloys are promising candidates for biodegradable materials in next-generation bone implants due to their favourable mechanical properties and biodegradability. However, their rapid degradation and corrosion, potentially leading to toxic byproducts, pose significant challenges for widespread use.

Objectives: This study aimed to address the challenges associated with Mg-based materials by thoroughly evaluating the biocompatibility, genotoxicity, and mechanical properties of Mg-based devices manufactured via Single Point Incremental Forming (SPIF).

View Article and Find Full Text PDF

Flexibility is crucial in forming processes as it allows the production of different product shapes without changing equipment or tooling. Single-point incremental forming (SPIF) provides this flexibility, but often results in excessive sheet metal thinning. To solve this problem, a pre-forming phase can be introduced to ensure a more uniform thickness distribution.

View Article and Find Full Text PDF

Thermo-Mechanical Numerical Simulation of Friction Stir Rotation-Assisted Single Point Incremental Forming of Commercially Pure Titanium Sheets.

Materials (Basel)

June 2024

Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, 12 Powstancow Warszawy Ave., 35-959 Rzeszow, Poland.

Single point incremental forming (SPIF) is becoming more and more widely used in the metal industry due to its high production flexibility and the possibility of obtaining larger material deformations than during conventional sheet metal forming processes. This paper presents the results of the numerical modeling of friction stir rotation-assisted SPIF of commercially pure 0.4 mm-thick titanium sheets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!