We have examined the role of lysyl residues in the binding of fd gene 5 protein to a nucleic acid polymer. The lysyl residues of the protein were chemically modified to form N epsilon, N epsilon-dimethyllysyl derivatives containing 13C-enriched methyl groups. The 13C NMR spectrum of the modified protein was studied as a function of pH and salt concentration. Differences in the local magnetic environment of the six dimethyllysyl amino groups allowed all six 13C resonances to be resolved for samples in the pH range 8.5-9.0 at less than 50 mM ionic strength. One of the dimethylamino resonances was split at low pH, indicating that the two methyl groups were nonequivalent and that the corresponding lysyl residue (either Lys-3 or Lys-7) might be involved in an ion-pairing interaction. Specific lysyl residues were protected from methylation when the protein was bound to poly(rU). The level of protection of individual lysyl residues was quantitated using peptide mapping and sequencing of gene 5 protein labeled with 3H and 14C radioactive labels. Lysines 24, 46, and 69 showed significant protection (33-52%) from methylation in the protein-polynucleotide complex, suggesting that these 3 residues form part of the nucleic acid-binding site. The alpha-amino group of Met-1 was relatively unreactive in both the free and bound protein, which indicated that the amino terminus is not as exposed in solution as in the crystal structure (Brayer, G.D., and McPherson, A. (1983) J. Mol. Biol. 169, 565-596).

Download full-text PDF

Source

Publication Analysis

Top Keywords

lysyl residues
20
gene protein
12
13c nmr
8
nucleic acid
8
methyl groups
8
protein
7
lysyl
6
residues
6
reductive methylation
4
methylation 13c
4

Similar Publications

Covalent Inhibitor Screening for Targeting LOXL2: Studied by Virtual Screening and Experimental Validation.

Recent Pat Anticancer Drug Discov

January 2025

Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China.

Background: Lysyl oxidase-like 2 (LOXL2) is a metalloenzyme that catalyzes oxidative deamination ε-amino group of lysine. It has been found that LOXL2 is a promotor for the metastasis and invasion in kinds of tumors. Previous studies show that disulfide bonds are important components in LOXL2, and their bioactivity can be regulated by those bonds.

View Article and Find Full Text PDF

Alpha-ketoglutarate (αKG) dependent Lysyl hydroxylase (LH) is a critical enzyme in the post-translational conversion of lysine into hydroxylysine in collagen triple helix and telopeptide regions. Overexpression of LH increases collagen hydroxylation and covalent cross-linkage, causing fibrosis. Currently, no drugs are available to inhibit LH potentially.

View Article and Find Full Text PDF

Plants make pyrimidine base substitutions in organellar mRNAs through the action of sequence-specific nuclear-encoded enzymes. Pentatricopeptide repeat (PPR) proteins are essential for ensuring specificity, while the enzymatic DYW domain is often present at the C-terminus of a PPR protein and dependent on the variant possessing C-to-U and/or U-to-C RNA editing activities. Expression of exogenous DYW-KP variant enzymes in bacteria leads to the modification of RNAs suggestive of U-to-C base changes.

View Article and Find Full Text PDF

Co-Translational Deposition of N-Acetyl-L-Lysine in Nascent Proteins Contributes to the Acetylome in Mammalian Cells.

Adv Sci (Weinh)

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.

Article Synopsis
  • N-acetyl-L-lysine is common in dietary protein, yet its effects on consumers are largely unknown.
  • Research indicates that Lysyl-tRNA synthetase (KARS) integrates this compound into proteins during their synthesis, influencing cellular acetylation levels.
  • This process, called co-translational modification (coTM), allows for the acetylation of proteins in ways that differ from traditional post-translational modifications, potentially expanding our understanding of protein regulation in cells.
View Article and Find Full Text PDF
Article Synopsis
  • JMJD7 is a human enzyme that specifically modifies lysine residues in certain proteins, which is important for their function.
  • Research indicates that JMJD7 has a limited range of substrates compared to other similar enzymes, but can efficiently use altered lysines for its reactions.
  • The study identifies ways to inhibit JMJD7 by using variants of its substrates, which could aid in developing targeted therapies against diseases related to JMJD7 activity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!