Disordered carbons are promising anode materials for sodium ion batteries. However, a major drawback of these materials is their low coulombic efficiency in the first cycles, which indicates parasitic reactions. Such reactions can be suppressed by alumina coating on the surface of the anodic materials; more ions are then available for electrochemical activity, and less electrolyte solution is lost. On the other hand, some pores and surface edge sites are passivated by the coating and are no longer available for reversible reaction with sodium ions; hence, their contribution is eliminated, leading to reduction in specific capacity. We show herein that electrochemical insertion of sodium ions into carbon anodes prior to alumina coating has a double positive effect on anode perfomances, meaning preventing passivation and maintaining high specific capacity. We show that the artificial layer still prevented parasitic reactions, while the pores and surface edge sites retained electrochemical activity. The capacity values were thus restored and even became higher as a result of preventing the development of a surface layer. Ultraviolet photoelectron spectroscopy measurements assessed the energetic states of the electrodes and confirmed that the alumina coating forms a barrier for interfacial electron transfer from the electrode to the solution at any polarization stage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b02141DOI Listing

Publication Analysis

Top Keywords

alumina coating
12
carbon anodes
8
ion batteries
8
parasitic reactions
8
electrochemical activity
8
pores surface
8
surface edge
8
edge sites
8
sodium ions
8
specific capacity
8

Similar Publications

Metal-free AAO membranes function as both filters and Raman enhancers for the analysis of nanoplastics.

Water Res

December 2024

Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea; NanoRaman Analysis Corp., 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. Electronic address:

Nanoplastics (NPs) are growing concerns for health and the environment, being widely distributed across marine, freshwater, air, and biological systems. Analyzing NPs in real environmental samples requires pretreatment, which has traditionally been complex and often leads to underestimation in actual samples, creating a gap between real-world conditions and research findings. In this study, we propose using anodic aluminum oxide (AAO) membrane as a direct Raman substrate for particles on a filter, achieving complete recovery during separation and concentration while simplifying the pretreatment stages.

View Article and Find Full Text PDF

A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications.

Nanomaterials (Basel)

December 2024

Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.

This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.

View Article and Find Full Text PDF

Inorganic/Inorganic Composites Through Emulsion Templating.

Adv Mater

December 2024

Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.

Inorganic/inorganic composites are found in multiple applications crucial for the energy transition, from nuclear reactors to energy storage devices. Their microstructures dictate their properties from mass transport to fracture resistance. Consequently, there has been a multitude of processes developed to control them, from powder mixing and the use of short or long fibers, to tape casting for laminates up to recent 3D printing.

View Article and Find Full Text PDF

Graphene oxide (GO)-based membranes have demonstrated great potential in water treatment. However, microdefects in the framework of GO membranes induced by the imperfect stacking of GO nanosheets undermine their size-sieving ability and structural stability in aqueous systems. This study proposes a targeted growth approach by growing zeolitic imidazolate framework-8 (ZIF-8) nanocrystals precisely to patch microdefects as well as to cross-link the porous graphene oxide (PGO) flakes coated on the outer surface of the hollow fiber (HF) alumina substrate (named the hybrid PGO/ZIF-8 membrane).

View Article and Find Full Text PDF

In this work, the simple fabrication of a new superhydrophobic magnetic sponge based on CNTs, NiFeO nanoparticles, and PDMS was investigated. CNTs were synthesized by chemical vapor deposition (CVD) on a nickel ferrite catalyst supported on aluminum oxide (NiFeO/AlO). The synthesis of nickel ferrite (NiFe) was accomplished using the sol-gel method, yielding magnetic nanoparticles (43 Amkg, coercivity of 93 Oe, 21-29 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!