Biomaterials and controlled release strategy for epithelial wound healing.

Biomater Sci

Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea. and Institute of Bioscience and Biotechnology, Kangwon National University, Republic of Korea.

Published: November 2019

The skin and cornea are tissues that provide protective functions. Trauma and other environmental threats often cause injuries, infections and damage to these tissues, where the degree of injury is directly correlated to the recovery time. For example, a superficial skin or corneal wound may recover within days; however, more severe injuries can last up to several months and may leave scarring. Thus, therapeutic strategies have been introduced to enhance the wound healing efficiency and quality. Although the skin and cornea share similar anatomic structures and wound healing process, therapeutic agents and formulations for skin and cornea wound healing differ in accordance with the tissue and wound type. In this review, we describe the anatomy and epithelial wound healing processes of the skin and cornea, and summarize the therapeutic molecules that are beneficial to the respective regeneration process. In addition, biomaterial scaffolds that inherently possess bioactive properties or modified with therapeutic molecules for topical controlled release and enhanced wound healing efficiency are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9bm00456dDOI Listing

Publication Analysis

Top Keywords

wound healing
24
skin cornea
16
controlled release
8
wound
8
epithelial wound
8
healing efficiency
8
therapeutic molecules
8
healing
6
skin
5
biomaterials controlled
4

Similar Publications

Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.

View Article and Find Full Text PDF

Photobiomodulation (PBM) is considered an effective and safe therapeutic modality in supporting the treatment of complications from a global pandemic-diabetes. In this study, PBM therapy is investigated to accelerate wound healing in diabetic mice (DM), under the combined biological effects of red light from a red organic light-emitting diode (ROLED) and near-infrared (NIR) light from an NIR conversion film (NCF) with dispersed CuInS/ZnS quantum dots (QDs). The QD concentration and the NCF structure were optimized to maximize the optical properties and mechanical stability.

View Article and Find Full Text PDF

Background Aims: The clinical translation of mesenchymal stromal cell secretome (MSC-S) has been challenging owing to a lack of appropriate methods in downstream processing. Dialysis is an age-old method of protein purification by the exchange of small molecules through a semi-permeable membrane. In this study, we investigated the potential of three forms of umbilical cord-derived MSC secretome (UC-MSC-S)-native (S), dialyzed (DS), and lyophilized (LDS)-for wound healing applications.

View Article and Find Full Text PDF

Engineered Au@MOFs silk fibroin-based hydrogel phototherapy platform for enhanced wound healing performance.

Int J Biol Macromol

January 2025

School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:

Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!