Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) cause MCT8 deficiency, characterized by severe intellectual and motor disability and abnormal serum thyroid function tests. Various knock-out mouse models as well as knock-out and knockdown zebrafish models are used as a disease model for MCT8 deficiency. Although important for model eligibility, little is known about the functional characteristics of the MCT8 orthologues in these species. Therefore, we here compared the functional characteristics of mouse (mm) MCT8 and zebrafish (dr) Mct8 to human (hs) MCT8. We performed extensive transport studies in COS-1 and JEG-3 cells transiently transfected with hsMCT8, drMct8, and mmMCT8. Protein expression levels and subcellular localization were assessed by immunoblotting, surface biotinylation, and immunocytochemistry. Sequence alignment and structural modeling were used to interpret functional differences between the orthologues. hsMCT8, drMct8, and mmMCT8 all facilitated the uptake and efflux of 3,3'-diiodothyronine (3,3'-T2), rT3, triiodothyronine (T3), and thyroxine (T4), although the initial uptake rates of drMct8 were 1.5-4.0-fold higher than for hsMCT8 and mmMCT8. drMct8 exhibited 350-fold lower apparent IC values than hsMCT8 and mmMCT8 for all tested substrates, and substrate preference of drMct8 (3,3'-T2, T3 > T4 > rT3) differed from hsMCT8 and mmMCT8 (T3 > T4 > rT3, 3,3'-T2). Compared with hsMCT8 and mmMCT8, -inhibition studies showed that T3 uptake by drMct8 was inhibited at a lower concentration and by a broader spectrum of TH metabolites. Total and cell surface expression levels of drMct8 and hsMCT8 were equal and both significantly exceeded those of mmMCT8. Structural modeling located most non-conserved residues outside the substrate pore, except for H192 in hsMCT8, which is replaced by a glutamine in drMct8. However, a H192Q substituent of hsMCT8 did not alter its transporter characteristics. Our studies substantiate the eligibility of mice and zebrafish models for human MCT8 deficiency. However, differences in the intrinsic transporter properties of MCT8 orthologues may exist, which should be realized when comparing MCT8 deficiency in different models. Moreover, our findings may indicate that the protein domains outside the substrate channel may play a role in substrate selection and protein stability.

Download full-text PDF

Source
http://dx.doi.org/10.1089/thy.2019.0009DOI Listing

Publication Analysis

Top Keywords

mct8 deficiency
16
hsmct8 mmmct8
16
mct8 orthologues
12
mct8
11
hsmct8
9
zebrafish mct8
8
zebrafish models
8
functional characteristics
8
human mct8
8
drmct8
8

Similar Publications

Unlabelled: Allan-Herndon-Dudley syndrome is a neurodevelopmental disorder characterized by motor and intellectual disabilities. Despite its rarity, there has been a rise in interest due to ongoing research and emerging therapy suggestions. In this multicenter, retrospective, cross-sectional study, the genetic characteristics and clinical data of twenty-one cases of genetically confirmed MCT8 deficiency were evaluated.

View Article and Find Full Text PDF

Swallowing Assessment in a Pediatric Case of Allan-Herndon-Dudley Syndrome (MCT8 Deficiency): Advanced Insights into Dysphagia via Flexible Endoscopic Evaluation of Swallowing (FEES).

Neuropediatrics

December 2024

Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics and Adolescent Medicine, KJF Klinik Josefinum gGmbH, Augsburg, Germany.

Patients with MCT8 deficiency often present with underweight and are prone to frequent pulmonary infections, including aspiration pneumonia. Despite commonly reported swallowing difficulties in this population, specific dysphagia symptoms have not been well-documented. We conducted a Flexible Endoscopic Evaluation of Swallowing (FEES) on a young boy diagnosed with MCT8 deficiency, who exhibited recurrent pulmonary infections and failed to achieve substantial weight gain despite an oral energy intake appropriate for his age and height.

View Article and Find Full Text PDF

Magnetic Resonance Imaging Techniques for Investigating the MCT8-Deficient Brain in Murine Disease Models.

Methods Mol Biol

November 2024

Laboratory of Thyroid Hormones and Central Nervous System, Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.

Magnetic resonance imaging (MRI) techniques have emerged as powerful tools for unraveling the pathophysiology of rare diseases, mainly due to their pivotal role in early diagnosis, disease characterization, and treatment monitoring in a non-invasive manner. In this chapter, we will review two essential MRI tools used for studying and evaluating the pathophysiology of Allan-Herndon-Dudley Syndrome or MCT8 deficiency, a rare disease caused by inactivating mutations in the SLC16A2 gene, encoding for the thyroid hormone-specific transmembrane transporter MCT8. These two MRI techniques are time-of-flight magnetic resonance angiography (TOF-MRA) and diffusion tensor imaging (DTI).

View Article and Find Full Text PDF

Toward a treatment for thyroid hormone transporter MCT8 deficiency - achievements and challenges.

Eur Thyroid J

December 2024

Department of Endocrinology, Diabetes & Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.

Patients with an inactive thyroid hormone (TH) transporter MCT8 (Allan-Herndon-Dudley Syndrome, AHDS) display severe neurological impairments and motor disabilities, indicating an indispensable function of MCT8 in facilitating TH access to the human brain. Consequently, the CNS of AHDS patients appears to be in a TH deficient state, which greatly compromises proper neural development and function. Another hallmark of this disease is that patients exhibit elevated serum T3 levels, leading to a hyperthyroid situation in peripheral tissues.

View Article and Find Full Text PDF

Rare forms of hypomyelination and delayed myelination.

Handb Clin Neurol

September 2024

Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy. Electronic address:

Hypomyelination is defined by the evidence of an unchanged pattern of deficient myelination on two MRIs performed at least 6 months apart in a child older than 1 year. When the temporal criteria are not fulfilled, and the follow-up MRI shows a progression of the myelination even if still not adequate for age, hypomyelination is excluded and the pattern is instead consistent with delayed myelination. This can be mild and nonspecific in some cases, while in other cases there is a severe delay that in the first disease stages could be difficult to differentiate from hypomyelination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!