Thermotolerance of camel (Camelus dromedarius) somatic cells affected by the cell type and the dissociation method.

Environ Sci Pollut Res Int

Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.

Published: October 2019

Researchers dealing with heat stress experiments use different cell kinds and use trypsin that has been reported to affect the cellular proteins of cultured cells. Therefore, we compared the effects of acute and chronic exposures to high temperature (45 °C) on camel skin fibroblast and granulosa cells. Primary culture of fibroblasts and granulosa cells tolerated the acute heat shock for 2 h; however, granulosa cells cultured for long duration (20 h) showed thermotolerance when compared with the fibroblasts. Moreover, the effect of cell dispersion method (trypsin and mechanical dissociation) on the thermotolerance of sub-cultured cells was examined. Trypsin altered the morphology of fibroblasts and granulosa cells exposed to 45 °C for 4 h. Moreover, trypsin significantly reduced the fibroblast and granulosa cell migration in the wound healing assay. The current results demonstrate that cell passaging and cell type can affect the thermotolerance of the cells; it also revealed that trypsin could alter the cellular response to the heat shock. We raise the demand for another alternative method for cell dispersion in experiments dealing with cellular responses to the heat shock.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-06208-5DOI Listing

Publication Analysis

Top Keywords

granulosa cells
16
heat shock
12
cells
8
cell type
8
fibroblast granulosa
8
fibroblasts granulosa
8
cell dispersion
8
cell
7
trypsin
5
granulosa
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!