The lateral neocortex is critical for contextual fear memory reconsolidation.

Sci Rep

Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.

Published: August 2019

AI Article Synopsis

  • Memories involve multiple brain areas and can be affected by how they are consolidated and reprocessed, especially in relation to fear experiences.
  • A study using positron emission tomography on male mice revealed changes in glucose consumption in key brain regions (lateral neocortex, hippocampus, and amygdala) depending on whether fear memories were reactivated.
  • Chemogenetics and optogenetics demonstrated that the lateral neocortex is crucial for the reconsolidation of fear memories and has a direct connection with the amygdala, highlighting its significance in memory processing circuits.

Article Abstract

Memories are a product of the concerted activity of many brain areas. Deregulation of consolidation and reprocessing of mnemonic traces that encode fearful experiences might result in fear-related psychopathologies. Here, we assessed how pre-established memories change with experience, particularly the labilization/reconsolidation of memory, using the whole-brain analysis technique of positron emission tomography in male mice. We found differences in glucose consumption in the lateral neocortex, hippocampus and amygdala in mice that underwent labilization/reconsolidation processes compared to animals that did not reactivate a fear memory. We used chemogenetics to obtain insight into the role of cortical areas in these phases of memory and found that the lateral neocortex is necessary for fear memory reconsolidation. Inhibition of lateral neocortex during reconsolidation altered glucose consumption levels in the amygdala. Using an optogenetic/neuronal recording-based strategy we observed that the lateral neocortex is functionally connected with the amygdala, which, along with retrograde labeling using fluorophore-conjugated cholera toxin subunit B, support a monosynaptic connection between these areas and poses this connection as a hot-spot in the circuits involved in reactivation of fear memories.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704072PMC
http://dx.doi.org/10.1038/s41598-019-48340-9DOI Listing

Publication Analysis

Top Keywords

lateral neocortex
20
fear memory
12
memory reconsolidation
8
glucose consumption
8
lateral
5
memory
5
neocortex critical
4
critical contextual
4
fear
4
contextual fear
4

Similar Publications

An intrinsic hierarchical, retinotopic organization of visual pulvinar connectivity in the human neonate.

Curr Biol

December 2024

University of Pennsylvania, Department of Psychology, Hamilton Walk, Philadelphia, PA 19104, USA. Electronic address:

The thalamus plays a crucial role in the development of the neocortex, with the pulvinar being particularly important for visual development due to its involvement in various functions that emerge early in infancy. The development of connections between the pulvinar and the cortex constrains its role in infant visual processing and the maturation of associated cortical networks. However, the extent to which adult-like pulvino-cortical pathways are present at birth remains largely unknown, limiting our understanding of how the thalamus may support early vision.

View Article and Find Full Text PDF

Reprogrammed human lateral ganglionic eminence precursors generate striatal neurons and restore motor function in a rat model of Huntington's disease.

Stem Cell Res Ther

November 2024

Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.

Article Synopsis
  • - Huntington's disease (HD) is a genetic disorder that leads to the loss of specific neurons in the brain, causing motor dysfunction, and researchers are exploring cell replacement therapies to restore neuronal function.
  • - The study focuses on creating human lateral ganglionic eminence precursors (hiLGEPs) from adult human skin cells through a process called direct reprogramming, which was evaluated for its ability to differentiate into functional neurons.
  • - Results showed that hiLGEPs could be successfully produced and transplanted into rats with HD-like symptoms, demonstrating their potential to survive, integrate, and contribute to neuronal function over a 14-week period.
View Article and Find Full Text PDF

Traumatic brain injury (TBI) is the leading cause of morbidity and mortality worldwide. Multiple injury models have been developed to study this neurological disorder. One such model is the lateral fluid percussion injury (LFPI) rodent model.

View Article and Find Full Text PDF

Despite perinatal damage to the cerebellum being one of the highest risk factors for later being diagnosed with autism spectrum disorder (ASD), it is not yet clear how the cerebellum might influence the development of cerebral cortex and whether this co-developmental process is distinct between neurotypical and ASD children. Leveraging a large structural brain MRI dataset of neurotypical children and those diagnosed with ASD, we examined whether structural variation in cerebellar tissue across individuals was correlated with neocortical variation during development, including the thalamus as a coupling factor. We found that the thalamus plays a distinct role in moderating cerebro-cerebellar structural coordination in ASD.

View Article and Find Full Text PDF

Layer 5 extratelencephalic (ET) neurons are present across neocortical areas and send axons to multiple subcortical targets. Two cardinal subtypes exist: (1) Slco2a1-expressing neurons (ET), which predominate in the motor cortex and project distally to the pons, medulla and spinal cord; and (2) Nprs1- or Hpgd-expressing neurons (ET), which predominate in the visual cortex and project more proximally to the pons and thalamus. An understanding of how area-specific ET and ET emerge during development is important because they are critical for fine motor skills and are susceptible to spinal cord injury and amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!