The complex flow of liquid metal in evolving metallic foams is still poorly understood due to difficulties in studying hot and opaque systems. We apply X-ray tomoscopy -the continuous acquisition of tomographic (3D) images- to clarify key dynamic phenomena in liquid aluminium foam such as nucleation and growth, bubble rearrangements, liquid retraction, coalescence and the rupture of films. Each phenomenon takes place on a typical timescale which we cover by obtaining 208 full tomograms per second over a period of up to one minute. An additional data processing algorithm provides information on the 1 ms scale. Here we show that bubble coalescence is not only caused by gravity-induced drainage, as experiments under weightlessness show, and by stresses caused by foam growth, but also by local pressure peaks caused by the blowing agent. Moreover, details of foam expansion and phenomena such as rupture cascades and film thinning before rupture are quantified. These findings allow us to propose a way to obtain foams with smaller and more equally sized bubbles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704127PMC
http://dx.doi.org/10.1038/s41467-019-11521-1DOI Listing

Publication Analysis

Top Keywords

x-ray tomoscopy
8
tomoscopy explore
4
explore dynamics
4
dynamics foaming
4
foaming metal
4
metal complex
4
complex flow
4
flow liquid
4
liquid metal
4
metal evolving
4

Similar Publications

Operando X-Ray Tomoscopy of Laser Beam Welding.

Adv Sci (Weinh)

January 2025

Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.

The phenomena occurring in a weld seam during advancement of a laser beam over a metallic component are still under dispute. The occurrence and evolution of porosity and the occasional blowout of melt need to be understood. Here, a recently developed X-ray tomoscopy setup is applied, providing one hundred 3D images per second to capture the temporal evolution of the melt pool in an AlSi9Cu3(Fe) die-casting while a laser beam advances.

View Article and Find Full Text PDF

We report on recent developments that enable megahertz hard X-ray phase contrast imaging (MHz XPCI) experiments at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of the European XFEL facility (EuXFEL). We describe the technical implementation of the key components, including an MHz fast camera and a modular indirect X-ray microscope system based on fast scintillators coupled through a high-resolution optical microscope, which enable full-field X-ray microscopy with phase contrast of fast and irreversible phenomena. The image quality for MHz XPCI data showed significant improvement compared with a pilot demonstration of the technique using parallel beam illumination, which also allows access to up to 24 keV photon energies at the SPB/SFX instrument of the EuXFEL.

View Article and Find Full Text PDF

Tomoscopy: Time-Resolved Tomography for Dynamic Processes in Materials.

Adv Mater

November 2021

Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin, 14109, Germany.

The structure and constitution of opaque materials can be studied with X-ray imaging methods such as 3D tomography. To observe the dynamic evolution of their structure and the distribution of constituents, for example, during processing, heating, mechanical loading, etc., 3D imaging has to be fast enough.

View Article and Find Full Text PDF

Using X-ray tomoscopy to explore the dynamics of foaming metal.

Nat Commun

August 2019

Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.

The complex flow of liquid metal in evolving metallic foams is still poorly understood due to difficulties in studying hot and opaque systems. We apply X-ray tomoscopy -the continuous acquisition of tomographic (3D) images- to clarify key dynamic phenomena in liquid aluminium foam such as nucleation and growth, bubble rearrangements, liquid retraction, coalescence and the rupture of films. Each phenomenon takes place on a typical timescale which we cover by obtaining 208 full tomograms per second over a period of up to one minute.

View Article and Find Full Text PDF

Supercapacitive admittance tomoscopy.

J Am Chem Soc

September 2005

Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland.

A sensor for measuring adsorption on a substrate has been designed including a contactless detection scheme, called supercapacitive admittance tomoscopy (SCAT). The sensor comprises a thin dielectric layer with two parallel band electrodes on the one side and a chemically modified surface on the other onto which the adsorption of molecules occurs. Upon application of a high frequency ac voltage between the two electrodes, a capacitive coupling is established across the dielectric layer, and the admittance measured depends on the surface state of the chemically modified interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!