Cocaine induces differential circular RNA expression in striatum.

Transl Psychiatry

National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.

Published: August 2019

Circular RNA (circRNA), a novel type of endogenous non-coding RNA, plays natural miRNA sponge effect that represses the activities of corresponding miRNAs through binding with them, thus modulating transcriptional expression of genes. Recent studies indicate that circRNAs are significantly enriched in the brain and some of them are derived from synaptic protein-coding genes. In addition, miRNAs are involved in synaptic plasticity, memory formation, and cocaine addiction. However, the role of circRNAs in cocaine reward is unclear. This study aimed to investigate the expression profile of striatal circRNAs in the mice after cocaine self-administration. By using circRNA microarray analysis, we observed that 90 striatal circRNAs were differentially expressed in cocaine self-administering mice, of which 18 circRNAs were up-regulated and 72 down-regulated. Six circRNAs were selected randomly for validation by using quantitative reverse transcription-PCR, and their expression levels showed consistency with microarray analysis. We backward predicted the circRNAs and their binding sites of miRNAs associated with neuroplasticity. In functional validation test, mmu_circRNA_002381 may modulate the transcription of certain genes associated with neuroplasticity, such as limk1 and bdnf. Taken together, circRNAs may participate in cocaine behavioral effect via interacting with miRNAs. Our findings reveal a potential role of circRNAs in cocaine effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704174PMC
http://dx.doi.org/10.1038/s41398-019-0527-1DOI Listing

Publication Analysis

Top Keywords

circrnas
9
circular rna
8
role circrnas
8
circrnas cocaine
8
striatal circrnas
8
microarray analysis
8
associated neuroplasticity
8
cocaine
7
cocaine induces
4
induces differential
4

Similar Publications

Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets.

View Article and Find Full Text PDF

One of the outstanding features of chronic hepatitis B infection (CHB) is its strong association with liver fibrosis. CHB induced inflammation and injury trigger multiple biochemical and physical changes that include the promotion of a wide range of cytokines, chemokines and growth factors that activate hepatic stellate cells (HSCs) CHB induced activation of hepatic stellate cells (HSCs) is regarded as a central event in fibrogenesis to directly promote the synthesis of myofibroblasts and the expression of a range of materials to repair injured liver tissue. Fibrogenesis is modulated by the mainstream epigenetic machinery, as well as by non-coding RNA (ncRNA) that are often referred to as an ancillary epigenetic response to fine tune gene expression.

View Article and Find Full Text PDF

RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis.

View Article and Find Full Text PDF

DNA Damage-Induced Ferroptosis: A Boolean Model Regulating p53 and Non-Coding RNAs in Drug Resistance.

Proteomes

January 2025

Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil.

The tumor suppressor p53, in its wild-type form, plays a central role in cellular homeostasis by regulating senescence, apoptosis, and autophagy within the DNA damage response (DDR). Recent findings suggest that wild-type p53 also governs ferroptosis, an iron-dependent cell death process driven by lipid peroxidation. Post-translational modifications of p53 generate proteoforms that significantly enhance its functional diversity in regulating these mechanisms.

View Article and Find Full Text PDF

Background: Prostate cancer (PC) is the most frequently diagnosed cancer in men and continues to be a major cause of cancer-related mortality worldwide. In recent years, non-coding RNAs (ncRNAs) have emerged as a significant focus in molecular biology research, playing a pivotal role in the development and progression of PC. This study employed bibliometric analysis to explore the global outputs, research hotspots, and future trends in ncRNA-related PC research over the past 20 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!