Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cardiac fibrosis is a common pathological feature of many cardiovascular diseases. The regulatory mechanisms of miRNAs in cardiac fibrosis are still unknown. Previous studies on miR-214-3p in cardiac fibroblasts reached contradictory conclusions. Thus the role of miR-214-3p in cardiac fibrosis deserves further exploration. Using a combination of and studies, we identified miR-214-3p as an important regulator of cardiac fibrosis, and the proliferation and activation of cardiac fibroblasts. We demonstrated that the expression of miR-214-3p is down-regulated in TGF-β1-treated myofibroblasts and transverse aortic constriction (TAC)-induced murine model. Additionally, miR-214-3p/FSP1-cre mice and miR-214-3p/FSP1-cre mice were subjected to TAC operation or sham operation, and the conditional knockout of miR-214-3p in cardiac fibroblasts aggravates TAC-induced cardiac fibrosis. , our results indicate that miR-214-3p is an important repressor for fibroblasts proliferation and fibroblast-to-myofibroblast transition by functionally targeting NOD-like receptor family CARD domain containing 5 (NLRC5). In conclusion, our findings show that the deficiency of miR-214-3p exacerbates cardiac fibrosis and reveal a novel miR-214-3p/NLRC5 axis in the regulation of cardiac fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/CS20190203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!