Cancer is a very challenging disease to treat, both in terms of treatment efficiency and side-effects. To overcome these problems, there have been extensive studies regarding the possibility of improving treatment by employing combination therapy, and by exploring therapeutic modalities with reduced side-effects (such as photodynamic therapy (PDT)). Herein, this work has two aims: (i) to develop self-activating photosensitizers for use in light-free photodynamic therapy, which would eliminate light-related restrictions that this therapy currently possesses; (ii) to assess their co-treatment potential when combined with reference chemotherapeutic agents (Tamoxifen and Metformin). We synthesized three new photosensitizers capable of self-activation and singlet oxygen production via a chemiluminescent reaction involving only a cancer marker and without requiring a light source. Cytotoxicity assays demonstrated the cytotoxic activity of all photosensitizers for prostate and breast tumor cell lines. Analysis of co-treatment effects revealed significant improvements for breast cancer, producing better results for all combinations than just for the individual photosensitizers and even Tamoxifen. By its turn, co-treatment for prostate cancer only presented better results for one combination than for just the isolated photosensitizers and Metformin. Nevertheless, it should be noted that the cytotoxicity of the isolated photosensitizers in prostate tumor cells was already very appreciable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722738PMC
http://dx.doi.org/10.3390/biom9080384DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
12
photosensitizers prostate
8
isolated photosensitizers
8
photosensitizers
6
therapy
5
cancer
5
study combination
4
combination self-activating
4
self-activating photodynamic
4
therapy chemotherapy
4

Similar Publications

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.

View Article and Find Full Text PDF

The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes ( and ) with electron donor-acceptor-donor configuration.

View Article and Find Full Text PDF

Turning Waste into Treasure: Functionalized Biomass-Derived Carbon Dots for Superselective Visualization and Eradication of Gram-Positive Bacteria.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.

Gram-positive bacteria pose significant threats to human health, necessitating the development of targeted bacterial detection and eradication strategies. Nevertheless, current approaches often suffer from poor targeting specificity. Herein, the study utilizes purple rice lixivium to synthesize biomass carbon dots (termed BCDs) with wheat germ agglutinin-like residues for precisely targeting Gram-positive bacteria.

View Article and Find Full Text PDF

Mechanofluorochromism (MFC) and mechanoluminescence (ML) materials have garnered significant attention from researchers due to their potential applications in anti-counterfeiting, optical recording, photodynamic therapy, bioimaging, stress sensing, display technology, and ink-free printing paper. Among the various building blocks utilized in these materials, phenothiazine (PTZ) has emerged as a widely employed fundamental component owing to its distinctive electronic and optical properties as well as its facile modification capabilities. Summarizing the recent progress of PTZ derivatives and analogues in this field holds practical significance.

View Article and Find Full Text PDF

Enhancing Photodynamic Therapy Efficacy via Photo-Triggered Calcium Overload and Oxygen Delivery in Tumor Hypoxia Management.

ACS Appl Mater Interfaces

January 2025

Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.

: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!