A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study on stable mass transfer and enrichment of phenol by 1-octanol/kerosene/polyvinyl chloride polymer inclusion membrane. | LitMetric

A polymer inclusion membrane (PIM) that contains a polyvinyl chloride (PVC) polymer matrix and 1-octanol (OCT) as specific carrier (PO-PIM) was prepared to investigate the mass transfer behaviour of phenol in aqueous solutions. Results showed that the mass transfer behaviour of the PO-PIM for phenol conformed to the first-order kinetics. In addition, the mass transfer efficiency for phenol reached the maximum when the OCT content was 82.8 wt%. The mass transfer activation energy (E) was 14.46 kJ mol, which indicated that intramembranous diffusion was the main controlling factor in the mass transfer process. The introduction of hydrophobic additives, such as kerosene, liquid paraffin and vegetable oil, into the PO-PIM could remarkably improve its stability. In an aqueous solutions of phenol ranging from 0 mg L to 9000 mg L, the initial flux (J) of kerosene/PVC/OCT-PIM (KPO-PIM) was positively correlated with the initial concentration of phenol. For a stripping solution with a feed solution pH of 2.0 and a sodium hydroxide concentration of 0.1 mol L, the maximum permeability coefficient during stable mass transfer reached 12.55 μm s. At a mass transfer area of 3.14 cm, an enrichment factor (EF) of 3.5 for 200 mg L of phenolic aqueous solution was achieved within 48 h through KPO-PIM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.07.046DOI Listing

Publication Analysis

Top Keywords

mass transfer
32
mass
8
stable mass
8
transfer
8
polymer inclusion
8
inclusion membrane
8
transfer behaviour
8
aqueous solutions
8
phenol
6
study stable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!