Half-metals with high Curie temperature are ideal candidates for applications in spin-based electronics-an emerging technology utilizing a spin degree of freedom in electronic devices. Many half-metallic materials have been predicted theoretically, and some have been confirmed experimentally. At the same time, in thin-film geometry the electronic structure of these materials may change due to the potential presence of surface/interface states. This could limit practical applications of these materials in nano-size devices, since typically these states result in reduced spin-polarization. Here, from first principles we study a full Heusler compound, CoCrAl in thin film geometry. This material has been studied extensively, and it has been reported that it exhibits half-metallic properties in the bulk. We show contrary to the earlier reports that this material retains 100% spin polarization in CrAl-terminated thin film geometry (Co-termination results in destroyed half-metallicity). Moreover, we confirm that under biaxial strain CoCrAl retains half-metallicity for a practically feasible range of considered pressure, i.e. in principle it may stay half-metallic if used in thin-film heterostructures, where lattice mismatch is a common scenario. The magnetic alignment of CoCrAl is confirmed to be ferromagnetic, with the non-integer total magnetic moment of Co-terminated cell, and the integer total magnetic moment of CrAl-terminated cell, consistent with their corresponding non-half-metallic and half-metallic electronic structures. If confirmed experimentally, these results may have an important impact in spin-based electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ab3d6c | DOI Listing |
Mater Horiz
January 2025
School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
Multilayer thin films composed of dielectric BaCaZrTiO (BCZT) and oxygen-deficient BCZT (BCZT-OD) were fabricated on (001)-oriented NSTO substrates using the pulsed laser deposition (PLD) technique. Unlike conventional approaches to energy storage capacitors, which primarily focus on compositional or structural modifications, this study explored the influence of the layer sequence and periodicity. The interface between the NSTO substrate and the BCZT-OD layer forms a Schottky barrier, resulting in electric field redistribution across the sublayers of the BCZT/BCZT-OD//(1P) thin film.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, IIT Dharwad, Dharwad, Karnataka 580007, India.
The favorable redox properties of ferrocene have led to the extensive development of ferrocene-based systems for several electrochemical applications but have scarcely been explored for electrochromism. Here, we report the synthesis and electrochromic properties of novel π-conjugated ferrocene-dicyanovinylene systems (- and -). Monosubstituted (-) and disubstituted (-) compounds have been developed via Knoevenagel condensation of methyl-dicyanovinyl ferrocenes ( or ) with various aromatic aldehydes.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Thin Film Energy Materials, Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia.
NiO, a wide band gap hole-transporting material (HTM), is gaining attention in photovoltaics due to its optical transparency, chemical stability, and favourable band alignment with absorber. This study uses NiO nanoparticle-based HTM in semi-transparent SbS solar cells via a simple chemical precipitation method. We optimised NiO layer by varying precursor solution concentration and studied its impact on optical and structural properties, composition of nanoparticles and subsequent effect on the performance of semi-transparent SbS solar cell.
View Article and Find Full Text PDFBiomed Mater
January 2025
Dagestan State Medical University of the Ministry of Health of the Russian Federation, Makhachkala, Mahackala, Dagestan, 367000, RUSSIAN FEDERATION.
Suture-associated surgical site infection (SSI) causes bacterial pathogens to colonize on the suture surface that are highly resistant to antibiotic treatment. Conventional suture materials used in surgical practice are causing complications such as infection and chronic inflammation. Surgical suture materials with antibacterial coatings are widely used in surgical practice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!