Lipase B from Candida antarctica (CalB) is the most widely used lipase, including in many industrial sectors, such as in biodiesel and pharmaceuticals production. CalB has been produced by heterologous expression using Pichia pastoris under PGK constitutive promoter (named LipB). Here, we have studied the structural features of commercial CalB and LipB enzymes using circular dichroism and fluorescence under different conditions. In the presence of denaturing agents CalB was more stable than LipB, in contrast, at increasing temperatures, LipB was more thermostable than CalB. Mass spectrometry data indicates that both enzymes have an insertion of amino acids related to α-factor yeast signal, however LipB enzyme showed the addition of nine residues at the N-terminal while CalB showed only four residues. Molecular modeling of LipB showed the formation of an amphipathic α-helix in N-terminal region that was not observed in CalB. This data suggests that this new α-helix possess could be involved in LipB thermostability. These results associated with new structural studies may provide information to the design of novel biocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.08.148 | DOI Listing |
Int J Biol Macromol
December 2024
Graduate Program in Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil; Institute of Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil. Electronic address:
The objective of this study was to produce new and renewable bio-based plasticizers from used soybean cooking oil (USCO). First, USCO was completely converted into free fatty acids (FFAs) using lipase from Candida rugosa. Next, these FFAs were enzymatically esterified with benzyl alcohol in solvent-free systems.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
This study investigates the intricate dynamics underlying lipase performance in organic solvents using comprehensive molecular dynamics (MD) simulations, supported by enzyme kinetics data. The study reveals that a single criterion can neither predict nor explain lipase activity in organic solvents, indicating the need for a comprehensive approach. Three lipases were included in this study: lipase B (CALB), lipase (RML), and lipase (TLL).
View Article and Find Full Text PDFEnviron Pollut
December 2024
Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:
Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.
View Article and Find Full Text PDFChembiochem
December 2024
University of Lille, UMRtBioEcoAgro, PolytechLille Bd Langevin, 59655, Villeneuve d'Ascq, FRANCE.
The process to synthesize biodiesel is well-developed and optimized to overcome the disadvantages like the competition with agriculture using feedstock, and the problematics in the process. Oils from waste and enzymatic catalysis have proven to be good solutions to these problems. Lipases are currently the most commonly used enzymes in the transesterification of oils; nevertheless, enzymes have a high cost and must be immobilized to offer repetitive reuse.
View Article and Find Full Text PDFMolecules
December 2024
Science Institute, Chemistry Department, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland.
This report describes the asymmetric synthesis of a focused library of enantiopure structured triacylglycerols (TAGs) comprised of a single saturated fatty acid (C6, C8, C10, C12, C14 or C16), a pure bioactive n-3 polyunsaturated fatty acid (EPA or DHA) and a potent drug (ibuprofen or naproxen) intended as a novel type of prodrug. One of the terminal -1 or -3 positions of the glycerol backbone is occupied with a saturated fatty, the remaining one with a PUFA, and the drug entity is present in the -2 position. This was accomplished by a six-step chemoenzymatic approach starting from enantiopure ()- and ()-solketals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!