Spatial sorting to discrete quality control sites in the cell is a process harnessing the toxicity of aberrant proteins. We show that the yeast t-snare phosphoprotein syntaxin5 (Sed5) acts as a key factor in mitigating proteotoxicity and the spatial deposition and clearance of IPOD (insoluble protein deposit) inclusions associates with the disaggregase Hsp104. Sed5 phosphorylation promotes dynamic movement of COPII-associated Hsp104 and boosts disaggregation by favoring anterograde ER-to-Golgi trafficking. Hsp104-associated aggregates co-localize with Sed5 as well as components of the ER, trans Golgi network, and endocytic vesicles, transiently during proteostatic stress, explaining mechanistically how misfolded and aggregated proteins formed at the vicinity of the ER can hitchhike toward vacuolar IPOD sites. Many inclusions become associated with mitochondria in a HOPS/vCLAMP-dependent manner and co-localize with Vps39 (HOPS/vCLAMP) and Vps13, which are proteins providing contacts between vacuole and mitochondria. Both Vps39 and Vps13 are required also for efficient Sed5-dependent clearance of aggregates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2019.07.053 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
January 2025
State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China. Electronic address:
Aging is a complicated process, featuring the progressive deterioration of physiological functions and a heightened susceptibility to diseases including neurodegenerative disorders, cardiovascular diseases, and cancer. Apigenin, a flavonoid existing in various plants, has attracted attention due to its potential role in anti-aging. In this investigation, the potential effect of apigenin on extending lifespan in Saccharomyces cerevisiae (yeast) and Drosophila melanogaster (flies) was explored.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, Shandong Province, China. Electronic address:
The expanded lethal (2) essential for life [l(2)efl] gene family is responsive to proteostatic stresses. Their protein products are core components of the stress response mechanism and are emerging as promising biomarkers for cellular stress in Apis mellifera. However, l(2)efl (LOC410857) uniquely remains unresponsive to heat stress within this gene family, and research examining its role in adaptation to other types of stress across diverse bee species is scarce.
View Article and Find Full Text PDFFEBS J
December 2024
Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada.
Co-chaperones are key elements of cellular protein quality control. They cooperate with the major heat shock proteins Hsp70 and Hsp90 in folding proteins and preventing the toxic accumulation of misfolded proteins upon exposure to stress. Hsp90 interacts with the co-chaperone stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) and activator of Hsp90 ATPase protein 1 (Aha1) among many others.
View Article and Find Full Text PDFRedox Biol
February 2025
Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE).
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
The Unfolded Protein Response (UPR) was discovered in budding yeast as a mechanism that allows cells to adapt to ER stress. While the Ire1 branch of this pathway is highly conserved, it is not thought to be important for cellular homeostasis in the absence of stress. Surprisingly, we found that removal of UPR activity led to pervasive aneuploidy in budding yeast cells, suggesting selective pressure resulting from UPR-deficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!