Amplification of reactive oxygen species (ROS) generation through covalent conjugation of bovine serum albumin (BSA) with newly synthesized, ROS-producing carbon dots (CDs) upon visible light irradiation is reported for the first time. Derivatization of surface carboxyl functional groups of Anthrarufin-derived, green-emitting CD with the amine functionality of BSA ushers distinct changes in the photophysics of CD including an unprecedented ∼50 nm shift in its excitation maxima, decrease in fluorescence lifetime, and concomitant increase in ROS generation. Substantial conformational changes of BSA were witnessed upon conjugation with CD, rendering the BSA-CD conjugate resistant to pepsinolysis. A protease-proof nanoassembly was derived from the BSA-CD conjugate through desolvation that simultaneously hosts a prototype antibiotic and generates ROS with excellent efficiency, making it an attractive platform for antibacterial photodynamic therapy (A-PDT) applications. Systemic annihilation of both Gram-positive and -negative bacteria was achieved with the BSA-CD nanoassembly and envisioned as alternatives to traditional photosensitizers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b12455 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry, COMSATS University, Abbottabad 22060, KPK, Pakistan.
The ruthenium compounds have been known to have the wide range of potential applications as anticancer, antibacterial and anti-diabetic etc. The ligand substitutions play a vital role in enhancing the pharmacological and biological activities. In the present study, three ruthenium-metal based complexes, designated as (I-III), were synthesized and characterized employing element analysis, FTIR and HNMR.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Agriculture and Bioengineering, Heze University, Heze 274500, China. Electronic address:
Herin, the successful synthesis of a bis Schiff base (L) has been achieved using 2-hydroxy-1-naphthaldehyde and 1,3-diaminoguanidine as raw materials, which was further characterized by infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance hydrogen spectrum. Moreover, spectroscopic experiments demonstrated that the probe L showed good selectivity and visual detectability for Al. Its detection limit (DL) is 2.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Italy.
Hypothesis: Bubbles oscillating near a free surface are common across numerous systems. Thin liquid films (TLFs) formed between an oscillating bubble and a free surface can exhibit distinct morphological features influenced by interfacial properties, evaporation, and deformation history. We hypothesize that a continuous film presence throughout oscillation results in a wimple morphology, whereas intermittent film presence leads to a dimple formation.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China.
In clinical mastitis of dairy cows, the abnormal accumulation of apoptotic cells (ACs) and subsequent secondary necrosis and inflammation pose significant concerns, with macrophage-mediated efferocytosis, crucial for ACs clearance, remaining unexplored in this context. In nonruminants, MER proto-oncogene tyrosine kinase (MERTK) receptors are essential for efferocytosis and A Disintegrin and Metalloproteinase 17 (ADAM17) is thought to play a role in regulating MERTK integrity. This study aimed to delineate the in situ role of efferocytosis in clinical mastitis, with a particular focus on the interaction between MERTK and ADAM17 in bovine macrophages.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
Background: Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons.
Results: Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!