Implantable electronics are of great interest owing to their capability for real-time and continuous recording of cellular-electrical activity. Nevertheless, as such systems involve direct interfaces with surrounding biofluidic environments, maintaining their long-term sustainable operation, without leakage currents or corrosion, is a daunting challenge. Herein, we present a thin, flexible semiconducting material system that offers attractive attributes in this context. The material consists of crystalline cubic silicon carbide nanomembranes grown on silicon wafers, released and then physically transferred to a final device substrate (, polyimide). The experimental results demonstrate that SiC nanomembranes with thicknesses of 230 nm do not experience the hydrolysis process (, the etching rate is 0 nm/day at 96 °C in phosphate-buffered saline (PBS)). There is no observable water permeability for at least 60 days in PBS at 96 °C and non-Na ion diffusion detected at a thickness of 50 nm after being soaked in 1× PBS for 12 days. These properties enable Faradaic interfaces between active electronics and biological tissues, as well as multimodal sensing of temperature, strain, and other properties without the need for additional encapsulating layers. These findings create important opportunities for use of flexible, wide band gap materials as essential components of long-lived neurological and cardiac electrophysiological device interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b05168 | DOI Listing |
Heliyon
January 2025
AU-Sophisticated Testing and Instrumentation Centre (AU-STIC), CoE-Advanced Materials Synthesis (CoE-AMS), Department of Mechanical Engineering, Alliance School of Applied Engineering, Alliance University, Bengaluru, 562106, India.
A consistent research attempt to develop newer lightweight-high strength materials facilitates the automobile sector to excel in product efficiency. The present research is another endeavour to anchor the automobile industries by exploring novel composite. The different earth elements SiC and YO are utilised for the hybrid reinforcement of Al 5052 alloy in four different weight proportions.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Advanced Manufacturing Institute, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Silicon carbide (SiC) metal oxide semiconductor field-effect transistors (MOSFETs) are a future trend in traction inverters in electric vehicles (EVs), and their thermal safety is crucial. Temperature-sensitive electrical parameters' (TSEPs) indirect detection normally requires additional circuits, which can interfere with the system and increase costs, thereby limiting applications. Therefore, there is still a lack of cost-effective and sensorless thermal monitoring techniques.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
CT-Lab UG (Haftungsbeschränkt), Nobelstr. 15, 70569 Stuttgart, Germany.
Silicon carbide and an aluminum alloy (SiC/AlSi12) composite are obtained during the pressurized casting process of the aluminum alloy into the SiC foam. The foam acts as a high-stiffness skeleton that strengthens the aluminum alloy matrix. The goal of the paper is to describe the behavior of the material, considering its internal structure.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China.
The short-circuit (SC) robustness of SiC MOSFETs is critical for high-power applications, yet 1.2 kV devices often struggle to meet the industry-standard SC withstand time (SCWT) under practical operating conditions. Despite growing interest in higher voltage classes, no prior study has systematically evaluated the SC performance of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!